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Abstract. Cognitive load theory states that improper cognitive loads may
negatively affect learning. By identifying students’ working memory capacity
(WMC), personalized scaffolding techniques can be used, either by teachers or
adaptive systems to offer students individual recommendations of learning
activities based on their individual cognitive load. WMC has been identified
traditionally by dedicated tests. However, these tests have certain drawbacks
(e.g., students have to spend additional time on them, etc.). Therefore, recent
research aims at automatically detecting WMC from students’ behavior in
learning systems. This paper introduces an automatic approach to identify WMC
in learning systems using a genetic algorithm. An evaluation of this approach
using data from 63 students shows it outperforms the existing leading approach
with an accuracy of 85.1 %. By increasing the accuracy of automatic WMC
identification, more accurate interventions can be made to better support stu-
dents and ensure that their working memory is balanced properly while learning.
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1 Introduction

Working memory capacity (WMC) is a cognitive trait that influences the learning
process, in terms of learning speed, memorization of learned concepts and effectiveness
of skill acquisition [1]. WMC enables us to keep active a limited amount of information
(7 ± 2 items) for a brief period of time [2]. Exceeding the WMC limit can reduce
students’ learning performance, reduce transfer of learning or increase the amount of
time needed to learn [3, 4]. By identifying WMC, cognitive load can be individualized
to the student which benefits the learning process. For example, an adaptive recom-
mendation system could provide personalized suggestions for learning activities to
students [5]. Furthermore, simple awareness of WMC supports students in making
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better choices for self-regulated learning and teachers may factor in WMC when
making interventions for their students.

Traditionally, WMC is measured by asking students to take a specific multitasking
test such as operation span task (OSPAN) [6]. OSPAN is considered a stable and
reliable test [7] and several online versions of this test have been created, such as
WebOSPAN [8]. Although such tests are effective, they have the notable drawbacks of
requiring additional time and effort from learners to do the test and the risk of inac-
curacies due to factors such as the perceived importance of the test by the students,
stress or fatigue [9].

To overcome these drawbacks, automatic approaches have been investigated which
analyze students’ behavior to identify WMC automatically while students are learning
in a learning system. As a basis for such automatic approaches, several studies
investigated and found relationships between WMC and other student characteristics as
well as their relation to student behavior [e.g., 1, 10, 11]. To the best of our knowledge,
only one automatic approach for identifying WMC is proposed so far. DeWMC
(Detecting Working Memory Capacity) [12, 13] calculates WMC using six patterns
which all contribute equally to the identification of students’ WMC.

This paper presents a tool for automatic WMC identification called WMCID-GA.
WMCID-GA is based on DeWMC [12] and extends it through the use of a genetic
algorithm which optimizes the weights of patterns impacting the WMC calculation in
order to improve the precision of identifying WMC.

The remainder of this paper is structured as follows. Section 2 introduces the
proposed WMC identification approach. Section 3 describes the evaluation of
WMCID-GA and Sect. 4 concludes the paper.

2 WMCID-GA

In this section, we start with introducing DeWMC, followed by presenting WMCID-GA
(WMC IDentifier-Genetic Algorithm) and how its genetic algorithm was built.

DeWMC [12] uses six patterns (five behavior patterns and one pattern related to
learning styles based on the Felder-Silverman learning style model [14]) to calculate
WMC. The five behavior patterns consider behaviors including linear navigation,
constant reverse navigation, performing simultaneous tasks, recalling learned material,
and revisiting passed learning objects. Each of the six patterns has been selected based
on detailed investigations and evidence from literature that there exists a relation
between the respective pattern and WMC [12]. To calculate WMC, DeWMC first
extracts student data from a learning system’s database and computes the respective
patterns considering student behavior and their learning styles. For each pattern, a high
or low value is associated to high or low WMC, based on existing studies from
literature [12]. Then, for each learning session of a student, a WMC session value is
calculated building the average of all pattern values. Subsequently, the overall WMC
value is calculated by building a weighted average over all WMC session values,
considering the amount of available behavior data per learning session as a weight.

WMCID-GA is based on DeWMC. It uses the same patterns and a similar concept
to calculate WMC from these patterns, with the only difference that WMCID-GA is
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using a weight for each pattern when building the WMC session value (instead of
assuming that all patterns contribute equally to the WMC session value). To find the
optimal weight for each pattern, WMCID-GA uses a genetic algorithm (GA) [15, 16]
which is an optimization algorithm that utilizes concepts from evolutionary biology to
solve optimization problems.

A GA represents solutions as genomes, where each genome consists of a set of
numbers representing genes. To find the optimal weights of patterns, each genome
consists of six genes (each for one pattern) where each gene has a range of values
(representing the weight of the respective pattern) from 0.01 to 1.0 in increments of
0.01. A value of 0 is excluded since according to literature [12], each of these patterns
has at least a small contribution to the WMC identification. To calculate the
fitness/quality of a genome, the error between the actual WMC and the calculated
WMC for each student in a given dataset is calculated and the average error over all
students is used as fitness value. The calculated WMC is computed from the six
patterns, as described above, using the genome’s gene values as pattern weights.
The GA starts by initializing the population (P) with random values for each genome as
no information is available on the potential quality for any weight value. In each
generation, P/2 genome pairs are selected for crossover using the roulette wheel
technique and uniform crossover is used where each gene has a chance of being
swapped equal to the crossover weight (C). Then, uniform mutation is used on each
new offspring where each gene has a chance of being mutated equal to the mutation
weight (M). After crossover and mutation, the new genomes are merged into the
population and the genomes with the lowest fitness are culled until the population is
size P again. Once the new population is built, a new generation starts. To promote
finding the optimal solution, the generation number of the best solution (Gbest) is
recorded and the GA stops only after another Gbest generations passed without finding a
new best solution. To prevent early termination, a minimum of 10,000 generations
must pass before WMCID-GA can terminate.

3 Evaluation

In this section, the evaluation of WMCID-GA is reported, starting with presenting the
dataset and describing the evaluation design and performance metrics. Subsequently,
the optimization of parameters and overfitting reduction strategies are explained, fol-
lowed by a discussion of the results.

To evaluate WMCID-GA, data from 63 undergraduate students on the five behavior
patterns and the learning style pattern (identified by the Index of Learning Styles
questionnaire [17]), and WMC (identified by WebOSPAN [8]) was used.

The evaluation consists of three parts. First, to find the optimal values for the
parameters of the GA, an iterative experimental process was used. Second, an exper-
imental process was also used to test overfitting reduction strategies and find optimal
parameters for those strategies. Third, the optimal GA parameters and the optimal
overfitting reduction strategies were then used to run WMCID-GA and get final results.
In order to ensure generalizability to any datasets, 10 fold cross validation was used for
each part of the evaluation.
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To evaluate the performance of WMCID-GA in each part of the evaluation, three
metrics were used: ACC measures the difference between a student’s actual WMC and
the WMC identified by WMCID-GA. An ACC value is computed for each student and
an average ACC is built, which provides details on the overall accuracy of
WMCID-GA. LACC is the lowest ACC value in the assessment set and measures the
worst case scenario for an individual student. %Match measures the percentage of
students who were identified with reasonable accuracy. A threshold for reasonable
accuracy of ACC > 0.7 was calculated by considering the range of WMC values in the
dataset and assuming that ACC has to be at least higher than half of this range.

In the first part of the evaluation, the GA parameters are optimized in the following
order: population size (P), crossover weight (C) and mutation weight (M). For each
parameter, suitable parameter ranges or principles were investigated based on existing
literature [15, 16], resulting in a set of possible values for each parameter. For the first
parameter, WMCID-GA was executed iteratively for each value in the set while using a
mid-range value for the remaining parameters. The parameter value which produces the
best result is considered the optimal choice and used for all subsequent executions. This
process is repeated for each parameter with the resulting optimal parameter settings
shown in Table 1.

With genetic algorithms, overfitting is a potential problem. This problem was
addressed in the second part of the evaluation where the benefit of using two overfitting
reduction techniques, stratification [18] and future error prediction (FEP) [19], was
assessed through experimentation. For FEP, the optimal setting of an early termination
parameter (mingen) was also investigated. Table 2 shows the optimal overfitting
reduction settings.

In the third part of the evaluation, the optimal parameter and overfitting reduction
settings were used to obtain a final result. The results for the three performance metrics
are shown in Table 3, together with the respective results from DeWMC.

Comparing the results shows that WMCID-GA has outperformed DeWMC in
every metric; thereby, showing that optimizing the pattern weights improves the overall
accuracy of WMC identification as well as provides solutions that are fairer for each
single student. By conducting a closer examination of the results for each individual
student, it could be seen that WMCID-GA improved identification accuracy (ACC) for
every individual. Additionally, students with WMC between 0.4 and 0.7 (60.3 % of
students in the dataset) are identified better (average ACC = 0.898) than students
below 0.4 (average ACC = 0.820) and above 0.7 (average ACC = 0.762). These
results still compare favorably to the corresponding results for DeWMC with an
average ACC of 0.818 and 0.684 respectively. Most likely, this is caused by the GA not

Table 1. Optimal parameter settings

Population Crossover
weight

Mutation
weight

25 0.80 0.001

Table 2. Optimal overfitting reduction
settings

Stratification FEP mingen
On On 25
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having enough data for students with very high and very low WMC, as 28.6 % of
students have a WMC higher than 0.7 and 11.1 % have a WMC below 0.4. Therefore,
a larger sample size could help improve the results of WMCID-GA even further.

For each pattern, the minimum, maximum and average weights across all folds are
shown in Table 4. Additionally, Table 4 shows the percentage of learning sessions in
which a pattern was activated. These results indicate that constant reverse navigation,
performing simultaneous tasks and revisiting passed learning objects are more pre-
dictive of WMC than other patterns, however, further investigations have to be done
with respect to performing simultaneous tasks as such behavior was only found in
8.25 % of the learning sessions.

4 Conclusions

This paper has introduced WMCID-GA, an approach for identifying students’ working
memory capacity (WMC) from their behavior in learning systems. WMCID-GA
extends the rule-based approach DeWMC by optimizing the weights of patterns
through the use of a genetic algorithm. An evaluation with data from 63 students shows
that WMCID-GA is outperforming DeWMC in all investigated metrics and therefore,
can provide more accurate WMC results for more students. The results also indicate
that different patterns have different impact on the WMC identification.

By improving the precision of WMC identification and making it possible to identify
WMC automatically while students learn, learning environments can be personalized,
providing students with individualized recommendations for learning activities that help
balancing the cognitive load to their WMC. By optimizing the cognitive load, students
can have better learning outcomes and may require less time to learn [3, 4]. Furthermore,
more accurate WMC information can help students make better choices for
self-regulated learning by taking their WMC into account while teachers may make
better individualized suggestions to their students to help them learn.

Table 3. Result comparison between WMCID and DeWMC (top result bolded)

Approach ACC LACC %Match

WMCID-GA 0.851 0.694 0.893
DeWMC [12, 13] 0.809 0.442 0.809

Table 4. Minimum, maximum, and average weights and percentage of activated learning
sessions per pattern

Pattern Min Max Average Activated

Linear navigation 3 13 7 89.98 %
Constant reverse navigation 50 99 82 78.62 %
Performing simultaneous tasks 81 100 97 8.25 %
Recalling learned material 10 33 22 58.86 %
Revisiting passed learning objects 36 84 62 60.19 %
Learning styles 2 17 10 100.00 %
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Future work will deal with investigating other optimization algorithms and hybrid
algorithms for the given problem, to overcome some of the weaknesses of GAs.
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