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a b s t r a c t 

Identifying students’ learning styles has several benefits such as making students aware of their strengths 

and weaknesses when it comes to learning and the possibility to personalize their learning environment 

to their learning styles. While there exist learning style questionnaires for identifying a student’s learn- 

ing style, such questionnaires have several disadvantages and therefore, research has been conducted on 

automatically identifying learning styles from students’ behavior in a learning environment. Current ap- 

proaches to automatically identify learning styles have an average precision between 66% and 77%, which 

shows the need for improvements in order to use such automatic approaches reliably in learning en- 

vironments. In this paper, four computational intelligence algorithms (artificial neural network, genetic 

algorithm, ant colony system and particle swarm optimization) have been investigated with respect to 

their potential to improve the precision of automatic learning style identification. Each algorithm was 

evaluated with data from 75 students. The artificial neural network shows the most promising results 

with an average precision of 80.7%, followed by particle swarm optimization with an average precision of 

79.1%. Improving the precision of automatic learning style identification allows more students to benefit 

from more accurate information about their learning styles as well as more accurate personalization to- 

wards accommodating their learning styles in a learning environment. Furthermore, teachers can have a 

better understanding of their students and be able to provide more appropriate interventions. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Learning styles describe the preferences a student has for how

material is presented, how to work with material and how to inter-

nalize information ( Felder & Soloman, 20 0 0 ). Knowing a student’s

learning styles can help in several ways to improve the learning

process. For example, personalizing content to the learning styles

of students has been found to be beneficial to learning in several

ways such as improving satisfaction ( Popescu, 2010 ), learning out-

comes ( Bajraktarevic, Hall, & Fullick, 2003 ), and reducing the time

needed to learn ( Graf, Chung, Liu, & Kinshuk, 2009 ). Students may

also be enlightened by understanding their own learning styles

( Felder & Spurlin, 2005 ). This enlightenment on their strengths

and weaknesses allows them to make better choices when self-

regulating their learning. Furthermore, teachers can benefit from

knowing students’ learning styles as they can then provide more
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ppropriate interventions based on an individual student’s learn-

ng styles. 

In order to identify students’ learning styles, dedicated ques-

ionnaires can be used. Although typically valid and reliable, such

uestionnaires have notable drawbacks. First, they take the stu-

ent away from the actual learning task. Second, such question-

aires may sometimes misidentify students due to several factors.

 student’s perceived importance of the questionnaire can lead to

 misidentification of their learning styles as they may answer the

uestions very quickly without much thought. Further, students’

nswers may be biased by personal misconceptions or from per-

eived expectations. To overcome these drawbacks, research has

ocused on automatic approaches that identify students’ learning

tyles from their behavior in a learning system (e.g., Carmona,

astillo, & Millán, 2008; Cha et al., 2006; Dorça, Lima, Fernandes,

 Lopes, 2013; García, Amandi, Schiaffino, & Campo, 2007; Graf,

inshuk, & Liu, 2009; Latham, Crockett, McLean, & Edmonds, 2012;

zpolat & Akar, 2009; Villaverde, Godoy, & Amandi, 2006 ). Such an

utomatic approach reduces intrusiveness by working in the back-

round as the student uses the learning system. Furthermore, au-

omatic approaches are not influenced by students’ perceived im-
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ortance, preconceptions or expectations with respect to learning

tyles as only their actual behaviors are considered. 

As the current automatic approaches yield results between 66%

nd 77% average precision at identifying learning styles, there is a

eed for improvement before such approaches can be effectively

sed. The goal of this research is to investigate the use of com-

utational intelligence (CI) algorithms to improve the precision of

utomatic approaches to identify learning styles. In this paper, we

ntroduce four approaches to identify learning styles (LSID-ANN,

 SID-GA, L SID-ACS and L SID-PSO), each using a different CI algo-

ithm (i.e., artificial neural network (ANN), genetic algorithm (GA),

nt colony system (ACS), and particle swarm optimization (PSO)).

hese approaches are designed to work in any learning system and

ave been evaluated with real data from the learning management

ystem Moodle. 

The remainder of this paper is structured as follows. Section

 provides background information on learning styles and de-

cribes related works on automatic approaches used to identify

earning styles. Section 3 provides an overview of the CI algo-

ithms used in this research. Section 4 describes the four pro-

osed approaches and how the CI algorithms were adapted to

dentify learning styles. Section 5 presents the evaluation of the

pproaches. This includes the performance metrics used, the pro-

ess for optimizing the control parameters and examining overfit-

ing reduction strategies, and the results and observations on the

esults. Finally, Section 6 concludes this work and suggests future

irections to be taken. 

. Related work 

This section starts with providing some background informa-

ion on learning styles. Furthermore, related works on automatic

pproaches for identifying learning styles are presented. 

.1. Learning styles 

Individual students learn in different ways (e.g., Felder & Solo-

an, 20 0 0; Kolb, 1971 ). For example, some students may learn

est while working in groups, while others learn best working

lone. Another example is that some students may prefer to learn

y doing something while others prefer to read and reflect about

t. Learning styles are not just about a preference for a particu-

ar type of activity, but rather describe the entirety of the prefer-

nces a student has for how learning material is presented, how

hey process information and how they internalize the informa-

ion ( Felder & Soloman, 20 0 0 ). While there is not a single defi-

ition for learning styles, some of the more popular definitions in-

icate that learning styles are “a description of the attitudes and

ehaviors which determine an individual’s preferred way of learn-

ng” ( Honey & Mumford, 1992 ), “characteristic strengths and pref-

rences in the ways they (learners) take in and process informa-

ion” ( Felder, 1996 ) and “a complex manner in which, and condi-

ions under which, learners most efficiently and most effectively

erceive, process, store, and recall what they are attempting to

earn” ( James & Gardner, 1995 ). Based on different definitions of

earning styles, different learning style models have been proposed,

ncluding, for example, those by Felder and Silverman (1988), Kolb

1981), Pask (1976) and Honey and Mumford (1992) . 

As already mentioned, the knowledge about and the identifi-

ation of learning styles can benefit learners in many ways and

an significantly help in improving the learning process. However,

here also has been some critique on learning styles. For exam-

le, a criticism of learning styles is that using learning styles in a

ace-to-face environment requires an impractical effort f or teach-

rs ( Coffield, Moseley, Hall, & Ecclestone, 2004a ). In a classroom

ith many students and therefore, many different learning styles
epresented, there is no possibility that a teacher could adapt to

nd consider each student’s individual learning style. Solving that

ssue by splitting classrooms by learning styles is also logistically

mpractical in large scales ( Coffield et al., 2004a ). However, with

he increase in online education and the use of learning systems

 Dahlstrom, Walker, & Dziuban, 2013 ) this criticism becomes less

eaningful as it has already been shown that learning systems

an adapt to individual students’ learning styles and that such ap-

roach benefits learners ( Bajraktarevic et al., 2003; Popescu, 2010 ;

raf, Chung et al., 2009 ). Furthermore, even those who raise these

riticisms agree that identification of learning styles is useful as a

eans of self-awareness for students ( Coffield et al., 2004a ). When

tudents know their own learning styles it allows them to use their

trengths to their advantage to succeed at learning and understand

heir weaknesses when they struggle ( Coffield et al., 2004a; Felder

 Spurlin, 2005 ). Another point of criticism is the method for mea-

uring learning styles. Most often, learning styles are identified

hrough questionnaires. Such questionnaires have some general

rawbacks, including that they make certain assumptions about

earners that may not be true. For example, it is assumed that

earners are motivated to fill out such questionnaires, that they will

ll out the questionnaire truthfully (without the influence of per-

eived expectations) and that they actually know how they prefer

o learn. In addition, questionnaires have the drawback that they

re typically filled out only once and if learning styles change over

ime, then the results of these questionnaires would become out-

ated. Furthermore, some currently available questionnaires have

ssues with respect to validity and reliability. Coffield, Moseley,

all, and Ecclestone (2004b) argued that from the 13 major learn-

ng style models they have identified and studied, only three of the

odels are close to being considered valid and reliable. Given this

ritic on the current method of measuring learning styles, it is only

atural to investigate other approaches to identify learning styles.

s such, automatic approaches, where data from students’ behav-

ors within a learning system are used, seem ideal as they over-

ome most of the drawbacks of questionnaires. Such approaches

o not rely on any assumptions with respect to students’ motiva-

ion and attitudes, as they are purely based on student behavior.

urthermore, such approaches can use data over a period of time

nd therefore, update information on students’ learning styles fre-

uently, ensuring that this information never gets outdated. 

For this research, the Felder-Silverman learning styles model

FSLSM) (1988) has been selected for several reasons. The FSLSM

rings together different elements from the models by Kolb (1981),

ask (1976) and Myers-Briggs (1962) . The FSLSM uses four dimen-

ions: active / reflective (A/R), sensing / intuitive (S/I), visual /

erbal (V/V) and sequential / global (S/G), allowing the students’

earning styles to be described in great detail. The A/R dimension

escribes a preference for processing information, with active stu-

ents preferring to learn by doing, experimentation and collab-

ration, while reflective students preferring to think and absorb

he information alone or in small groups. The S/I dimension de-

cribes how students prefer to gather information. Students with a

ensing preference tend to gather information by the use of their

enses, i.e. interacting with the real world. Students with an intu-

tive learning style tend to prefer to gather information indirectly,

hrough the use of speculation or imagination. The V/V dimension

escribes the input preference of the student. Visual students pre-

er materials such as graphs, charts or videos, while verbal stu-

ents prefer words whether written or spoken. Lastly, the S/G di-

ension describes how students prefer to have information orga-

ized. Sequential students prefer information to be provided in a

inear (serial) fashion and tend to make small steps through learn-

ng material. Global students tend to make larger leaps from non-

nderstanding to understanding and tend to require seeing the

big picture” before understanding a topic. Another reason for se-
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Table 1 

Summary of existing automatic approaches to identify learning styles. 

Study Algorithm Evaluated Limitations 

Latham et al. (2012) Rule-based Yes Non-generic 

Graf, Kinshuk et al. (2009) Rule-based Yes –

García et al. (2007) Bayesian network Yes Cannot identify V/V dimension 

Özpolat and Akar (2009) NB tree classification Yes –

Cha et al. (2006) Decision tree Yes Identifies subset of students only 

Hidden Markov model 

Villaverde et al. (2006) Artificial neural network No Cannot identify V/V dimension 

Simulated data 

Carmona et al. (2008) Bayesian network No Students must rate LOs 

Dorça et al. (2013) Reinforcement learning No Simulated data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

a  

7

 

d  

t  

i  

u  

B  

B  

i  

p  

m

 

t  

s  

k  

N  

t  

F  

s  

b  

e  

A

 

s  

p  

b  

g  

a  

d  

f  

t  

a  

f  

i  

F  

f  

p  

8  

q  

a  

a  

s  

n

 

(  

l  

w  

t  

a  

f  
lecting this model is that unlike many other learning style mod-

els the FSLSM treats each dimension as a tendency instead of an

absolute type. This is done by representing each dimension on a

scale from + 11 to −11, allowing the strength of each preference to

be described. The FSLSM also has a valid and reliable questionnaire

( Felder & Spurlin, 2005 ) for identifying learning styles, the Index of

Learning Styles (ILS) ( Felder & Solomon, 1998 ). Research has found

that the FSLSM is well-suited to be used as a model for providing

personalized courses in learning systems ( Kuljis & Liu, 2005 ) and

correspondingly much research has been done using the FSLSM to

provide personalization ( Carver, Howard, & Lane, 1999; Filippidis

& Tsoukalas, 2009; Graf, 2007; Klašnja-Mili ́cevi ́c, Vesin, Ivanovi ́c, &

Budimac, 2011 ). 

2.2. Existing approaches to automatically identifying learning styles 

Graf (2007) describes automatic approaches for learning style

identification as either data-driven or literature-based. Data-driven

approaches use algorithms from the fields of data mining, machine

learning, artificial intelligence and/or computational intelligence to

construct a model/network from existing student behavior data

and their actual learning styles. Subsequently, this model/network

can then be used to identify learning styles using as input stu-

dent behavior data. Literature-based approaches do not build a

model/network based on student data but use rules from literature

to build a respective model/network. Similar to a questionnaire, the

literature-based approach uses as input student behavior data to

“answer questions” and applies predefined rules from literature to

calculate learning styles from student behavior data. In the follow-

ing paragraphs, an overview of existing automatic approaches that

use the FSLSM is provided and these approaches are summarized

in Table 1 . 

Latham et al. (2012) propose a literature-based approach used

with a natural language conversational agent called Oscar. In their

approach, logical rules are derived from literature, for example if

a student answers a question correctly after being shown an im-

age they may have a visual preference. The students’ behaviors are

extracted from the dialogs between the agent and student and the

rule set is applied to the data to identify the learning styles. In an

evaluation, learning styles have been identified with a precision of

86% for A/R dimension, 75% for S/I, 83% for V/V and 72% for S/G.

While these are very promising results, a significant drawback of

this approach is that it is tied to the Oscar system and cannot be

generalized to other systems. 

Another literature-based approach, “Detecting Learning Styles”

(DeLeS) ( Graf, Kinshuk et al., 2009 ) uses student behavior data re-

lated to different types of learning objects (e.g., content, quizzes,

forums, etc.) to identify learning styles in learning systems in gen-

eral. Rules have been derived from literature based on relations

between student behavior and learning styles and such behaviors

then give hints towards a particular learning style. For example, if

a student has accessed many exercises, this gives a hint towards
n active learning style. The proposed approach has been evalu-

ted and learning styles have been identified with a precision of

9% for A/R, 77% for S/I, 77% for V/V and 73% for S/G. 

García et al. (2007) used a Bayesian network (BN) in order to

etect students’ learning styles. They identified various behaviors

hat may be relevant to identifying learning styles in a given learn-

ng system. Then, a BN was trained with data from 50 students,

sing initial probabilities based on expert knowledge. The trained

N was then evaluated using 27 students. For each student, the

N provides a probability that the student has a particular learn-

ng style preference. As a result, the approach obtained an overall

recision of 58% for A/R, 77% for S/I and 63% for S/G (the V/V di-

ension was not considered). 

Özpolat and Akar (2009) developed and evaluated an approach

hat focuses on examining the learning objects (LOs) selected by

tudents as being most useful in response to a keyword search. The

eyword attributes of the LOs are mapped to learning style and

B tree classification is used to classify students with respect to

heir learning styles based on the selected LOs and their keywords.

or example, if the student selects LOs with the keyword attributes

uch as graphs, charts or jpg then the student is more likely to

e classified as having a visual preference. The approach has been

valuated with 40 students and as a result, a precision of 70.0% for

/R, 73.3% for S/I, 73.3% for S/G and 53.3% for V/V was obtained. 

Cha et al. (2006) evaluate two approaches in their study, deci-

ion trees and hidden Markov models (HMM). Similar to other ap-

roaches, numerous behaviors are used as input such as the num-

er of clicks on particular icons, time spent on some activities, quiz

rades and reading or posting to forums. The decision tree as well

s the HMM were evaluated with data from 70 students; however,

ata from students with a balanced learning style were removed

rom the dataset. A subset of the data is used to train the decision

ree based on knowing the actual learning styles. The HMM-based

pproach is trained to recognize the sequence of buttons clicked

rom students with known learning styles. The HMM is used to

dentify a future student’s learning styles from their click sequence.

or the decision tree, they found a precision of 66.7% for A/R, 77.8%

or S/I, 100% for V/V and 71.4% for S/G. The HMM approach is re-

orted as having precision values of 66.7% for A/R, 77.8% for S/I,

5.7% for V/V and 85.7% for S/G. Although some of the results are

uite high, as mentioned above they excluded all students with

 balanced learning style preference. Thus, the approaches have

 major limitation in that they can only identify students with a

trong learning style preference one way or another, and they can-

ot identify students with a balanced preference. 

Villaverde et al. (2006) proposed the use of a feed forward ANN

a 3-layer perceptron) with backpropagation under a supervised

earning model to identify learning styles. Ten behavior patterns

ere used as inputs such as what kind of reading material did

he student prefer, does the student revise their answers on ex-

ms prior to submission and does the student ignore, post or read

orums? As output, the neural network produces three values, rep-
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esenting the learning styles on three of the four learning style

imensions of the FSLSM. In an evaluation with simulated data,

n average precision of 69.3% across the three dimensions was ob-

ained. LSID-ANN is similar to this approach in that they both use

 3-layer perceptron with behavior patterns as inputs; however,

SID-ANN is expected to provide better results for two reasons.

irst, since a separate ANN is built for each FSLSM dimension each

SID-ANN is able to be more specialized and therefore more pre-

ise. Second, since Cha et al. (2006 ) used a single ANN, all of the

ehavior patterns are used as inputs for all three learning style di-

ensions they considered; however, it is likely that some of the

ehavior patterns were not relevant for some of the learning style

imensions. For each LSID-ANN only those behavior patterns ex-

ected to be relevant for each learning style dimension are used

s inputs. 

Carmona et al. (2008) also explored the use of a dynamic

ayesian network to identify learning styles. To LOs in the system

hey associated five learning style relevant attributes: format (im-

ge, text, etc.), resource type (exercise, example, etc.), interactivity

evel (very low to very high), interactivity type (active, expositive

r mixed) and semantic density (very low to very high). Each of

he attributes is mapped to one or more FSLSM dimension(s). Ev-

ry time a student selected a LOs, they would be asked to rate

he usefulness of the material from 1 to 4. After rating the LO, the

ating is used as evidence to adjust the belief state of the network.

he drawback to this approach, when compared to other automatic

pproaches, is that it requires input from the student instead of

orking solely on their behaviors. This is potentially intrusive for

he student and there is no guarantee that the student will rate

olely based on how it appealed to their learning styles. This ap-

roach was also not evaluated. 

Dorça et al. (2013) presented an approach for identifying learn-

ng styles using reinforcement learning (Q-learning). In this ap-

roach, LOs in the system were associated to particular learning

tyles based on expert knowledge. The student is then presented

Os to achieve a learning goal followed by an assessment on how

ell they learned the material. The probability that the student

as particular learning styles is then reinforced based on the per-

ormance assessment and how well the learning styles of the LO

atch the student’s current predicted learning styles. Three differ-

nt strategies are considered towards reinforcement, either rein-

orcing for high performance only, low performance only (inverse

einforcement) or both. So, for example, with a reinforcement with

igh performance strategy if the student performs well on an as-

essment it is more likely the student has the learning styles as-

ociated with the presented LO. The approach was only evaluated

ith simulated data. 

. Background on algorithms 

Since many related works use classification algorithms for iden-

ifying learning styles, in this research we propose the use of an

rtificial neural network (ANN). An ANN is a universal approxima-

or ( Hornik, Stinchcombe, & White, 1990 ) and so it is reasoned that

t may be a very suitable algorithm for identifying learning styles,

iven the typically small amount of data available in this line of

esearch. In addition to ANNs, this research evaluates the use of

hree optimization algorithms: genetic algorithm, ant colony sys-

em and particle swarm optimization. These algorithms have been

elected due to their wide-spread use to solve similar problems

 Pothiya, Ngamroo, & Kongprawechnon, 2010; Robinson & Rahmat-

amii, 2004; Yao, 1999 ). In the following subsections, each algo-

ithm is described in more detail. 
.1. Artificial neural network (ANN) 

ANNs ( Basheer & Hajmeer, 20 0 0; Mitchell, 1997 ) are inspired

y neurons in a brain. As such, they are described as a graph of

rtificial neurons. There are different ways these can be connected,

ith feed forward networks being the most commonly used ones,

here circular connections are not permitted. ANNs are configured

nto layers, distinguishing between a single and multi-layer per-

eptron, where the latter is more common. One common config-

ration of a multi-layer perceptron consists of three layers: input,

idden and output. In this configuration, each neuron in each layer

as a weighted connection (neural link) from each neuron in the

receding layer. Each input neuron has a single connection to an

nput variable. A sigmoid function (e.g., tanh) is used to calculate

he strength (output) of the neuron. The input to the sigmoid func-

ion is the sum of each input multiplied by the weight of the neu-

al link between the neurons. In this research, our approach, LSID-

NN, uses the commonly used configuration of a feed forward 3-

ayer perceptron. 

To evaluate the ANNs outputs, one of two learning strategies

re typically used: supervised or unsupervised learning. With su-

ervised learning, the correct answer for the sample is known, so

hat the output can be directly compared with the answer. With

nsupervised learning the correct answer for the sample is un-

nown. Unsupervised learning is generally used for finding clus-

ers or other structures in data. LSID-ANN uses a supervised learn-

ng strategy since training data include the actual learning styles

f students. 

Lastly, there are numerous techniques for training an ANN. One

f the most commonly used training algorithms is back propaga-

ion, which is also used for LSID-ANN. Using back propagation, the

NN is traversed in reverse along each neural link, adjusting the

eights and thresholds by calculating a weight modification ( �W )

s a sigmoid function of the error between the output and actual

alues. The weight modification is further multiplied by a learn-

ng rate ( η > 0) which helps control the size of the steps to take

o keep the ANN from oscillating over the optimum. Training may

e further optimized by adding momentum ( m ≥ 0) which aids in

scaping local optima. Lastly, two training modes are possible: in-

ividual and ensemble. In individual training the weight modifi-

ation is applied after the sample is run, whereas with ensemble

raining they are summed and applied at the end of the genera-

ion. The back propagation algorithm then runs until a termination

ondition is reached. 

.2. Genetic algorithm (GA) 

A genetic algorithm (GA) ( Grefenstette, 1986; Srinivas & Patnaik,

994 ) is an optimization algorithm that utilizes concepts from evo-

utionary biology to solve optimization problems. In biology, when

wo individuals produce offspring, they intermix their genes. If one

ffspring is more fit than others, it will tend to survive and pro-

uce offspring of its own and so propagate its parents’ genes. In

his way, over time, increasingly fit offspring are evolved. With GA,

 population of P genomes is produced. Each genome consists of

 genes and each gene represents a component of the solution.

n each generation, pairs of genomes are selected from the pop-

lation favoring genomes with higher fitness (e.g., by using the

oulette wheel technique where the chance of each genome being

elected is equal to its fitness divided by the sum of all genomes’

tness values). A crossover process is conducted where each pair

as some genes selected and swapped between them (based on

he crossover weight); thereby, producing two new genomes (off-

pring). This crossover operation allows the genetic algorithm to

ake leaps far from its current position, making it useful for es-

aping local optima. Then each offspring can be mutated by se-
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lecting some of its genes and changing them to a random value

(based on the mutation weight). Mutation ensures that gene diver-

sity does not stagnate by injecting new values into the genomes.

Finally, the new population is built from a mix of the genomes and

their offspring, depending on their fitness values. With the selec-

tion of a new population, a new generation starts. 

The functioning of the GA is controlled by three parameters and

a termination condition. The parameters are: population size ( P ),

crossover weight ( C ) and mutation weight ( M ). The population size

dictates the number of genomes in the population. The crossover

weight determines the likelihood that any particular gene will be

used for crossover; a high crossover weight encourages exploration

but can disrupt good combinations of genes. The mutation weight

determines the likelihood that a gene will be mutated, ensuring

that particular gene values do not persist forever. The termination

condition tells the GA when to stop processing. 

3.3. Ant colony system (ACS) 

ACS ( Dorigo & Gambardella, 1997b ) is one of several algorithms

collectively referred to as ant colony optimization. These algo-

rithms are inspired by the way ants share information while for-

aging for food. In such scenario, ants lay pheromone trails to food

sources, thereby indirectly communicating to the other ants about

the path to the food. With ACS, a graph is built where each node

represents a part of a solution to the problem and the whole path

through the graph represents a solution. Each link from one node

to another has a problem specific inherent desirability (local qual-

ity) and may also have pheromone laid upon it. The overall qual-

ity ( Q ) of a link is a function of the local quality ( l ) and amount

of pheromones ( τ ) on the link, with two parameters ( α ≥ 0 and

β ≥ 0) weighting the local quality and amount of pheromones re-

spectively (shown in Formula (1) ). 

To start the algorithm, a colony (population) of P artificial ants

is created and they are set to traverse the graph in the following

manner. Each ant is placed at a starting node, and depending on

the problem this may be a fixed node or selected in some fash-

ion, for example, randomly. The ant then chooses a link to follow

by a pseudorandom proportional rule described as follows. A ran-

dom value from 0 to 1 is selected and if this value is less than the

exploitation parameter (0 ≤ q 0 ≤ 1) then the link with the highest

quality ( Q ) is selected. Otherwise the link is selected by roulette

wheel technique (shown in Formula (2) ), where the chance of se-

lection is equal to the quality of the link divided by the total qual-

ity of all links from that node. Optionally, the list of nodes to be

considered under the pseudorandom proportional rule can include

only nodes that are from a candidate list, which is a pre-generated

static list of preferred choices from each node. Typically, a tabu list

is maintained for each ant so that it does not return to a previ-

ously visited node. If the ant cannot move to any node, then it is

considered stuck and depending on the problem this may mean

the solution is complete or invalid. In order to encourage explo-

ration, as an ant traverses a link, it consumes a portion (0 ≤ τ 0 ≤ 1)

of the pheromone (shown in Formula (3) ). This makes it less likely

that ants which follow will take the same path. Once all of the

ants have completed traversing the graph, a portion of pheromones

(0 ≤ ρ ≤ 1) from each link in the graph is evaporated causing the

colony to forget a little and so encourages exploration (shown in

Formula (4) ). Furthermore, the global best path or the iteration

best path has pheromones laid on each link of the path as a func-

tion of the fitness of the solution. Subsequently, a new generation

starts with ants starting again to move through the graph, until a

termination condition is fulfilled. 

Q = l α × τβ (1)
 n = 

Q ( l n , τn ) ∑ n 
x =1 Q ( l x , τx ) 

(2)

= ( 1 − τ0 ) × τ ′ (3)

= ( 1 − ρ) × τ ′ (4)

.4. Particle swarm optimization (PSO) 

PSO ( Eberhart & Kennedy, 1995 ) is an optimization algorithm

nspired by flocking movements in nature, such as birds. PSO is

sed where the solution space to a problem can be represented

s a hyperspace or hypershape. The position of a particle repre-

ents a candidate solution to the problem being solved. Each of

he coordinates in the position represents a component of the so-

ution although how the coordinates are decoded is problem spe-

ific. PSO uses search by social intelligence as the population of

articles share information as they fly through the space and ad-

ust their trajectories to focus on promising areas. 

PSO has the following control parameters: population size, in-

rtia, particle best acceleration, global best acceleration and max-

mum velocity which are described as follows ( Clerc & Kennedy,

002; Eberhart & Kennedy, 1995; Shi & Eberhart, 1998 ). The pop-

lation size is the number of particles in the swarm. Inertia

0 ≤ w ≤ 1) keeps the particle moving in the same direction it is

oing and so higher values promote global exploration. The parti-

le is encouraged to turn from its current position ( X curr ) towards

he particle best position so far ( X pbest ) and the global best posi-

ion ( X gbest ) based on the particle best acceleration (0 ≤ c1 ≤ 1 ) and

lobal best acceleration (0 < c2 ≤ 1 ) ( Eberhart & Kennedy, 1995 ).

igher acceleration rates promote exploitation of the most promis-

ng areas found so far. The maximum velocity ( Vmax ) helps to pre-

ent the particles from exploring too far from promising areas, al-

hough if it is set too low the particles may not be able to explore

nough space to find the best promising areas. 

To use PSO, a population of particles is created and placed in-

ide the hyperspace (or hypershape) with an initial position and

elocity. In each generation, each particle’s position is updated by

 velocity vector calculated using Formula (5) where V 0 is the

article’s current velocity and rand 1 and rand 2 are random values

rom 0 to 1. After each generation, the particle best position so far

 X pbest ) and the global best position ( X gbest ) may be updated based

n found solutions and a new generation is started, until a termi-

ation condition is reached. 

 = w × V 0 + ran d 1 × c1 ×
(
X curr − X pbest 

)
+ ran d 2 × c2 ×

(
X curr − X gbest 

)
(5)

. Learning styles identifiers 

In this section, four Learning Styles Identifier (LSID) approaches

re introduced, each using a different CI algorithm. These ap-

roaches aim at investigating the suitability of CI algorithms for

mproving the precision of identifying learning styles. Furthermore,

t was a requirement that these approaches would be applicable

nd useful for any learning system rather than being specific to a

articular system. 

In order to ensure that the LSID approaches are generalizable

nd applicable for any learning system, it was key to base the

pproaches on generic behavior patterns that can be collected in

ny learning system. After a literature review, we found that the

ehavior patterns used in DeLeS ( Graf, Kinshuk et al., 2009 ) are

ighly suitable for our approaches. These behavior patterns were

esigned to be generic and focus on elements that are available
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Table 2 

Relevant behavior patterns for each FSLSM dimension ( Graf, Kinshuk et al., 2009 ). 

Active/Reflective Sensing/Intuitive Visual/Verbal Sequential/Global 

content_stay ( −) content_stay ( −) content_visit ( −) outline_stay ( −) 

content_visit ( −) content_visit ( −) forum_post ( −) outline_visit ( −) 

example_stay ( −) example_stay ( + ) forum_stay ( −) question_detail ( + ) 

exercise_stay ( + ) example_visit ( + ) forum_visit ( −) question_develop ( −) 

exercise_visit ( + ) exercise_visit ( + ) question_graphics ( + ) question_interpret ( −) 

forum_post ( + ) question_concepts ( −) question_text ( −) question_overview ( −) 

forum_visit ( −) question_details ( + ) navigation_overview_stay ( −) 

outline_stay ( −) question_develop ( −) navigation_overview_visit ( −) 

quiz_stay_results ( −) question_facts ( + ) navigation_skip ( −) 

self_assess_stay ( −) quiz_revisions ( + ) 

self_assess_twice_wrong ( + ) quiz_results_stay ( + ) 

self_assess_visit ( + ) self_assess_stay ( + ) 

self_assess_visit ( + ) 
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o  
n different learning systems. Furthermore, they are based on an

xtensive literature review and experimentations to link the be-

avior patterns with learning styles, ensuring that each behavior

attern is in fact indicating a certain learning style. The behavior

atterns for each learning style dimension are shown in Table 2 ,

sing a “+ ” and “-” for indicating a high and low occurrence of

he respective pattern from the viewpoint of an active, sensing, vi-

ual, and sequential learning style. The patterns are based on dif-

erent types of learning objects including outlines, content, exam-

les, self-assessment quizzes, exercises, and forums. Furthermore,

eneral navigation of students through the course is considered.

atterns consider how long a student stayed on a certain type of

earning object (e.g., content_stay) and how often a student vis-

ted a certain type of learning object (e.g., content_visit). Further-

ore, questions of self-assessment quizzes were classified based

n whether they are about facts or concepts, require knowledge

bout details or overview knowledge, include graphics or text only,

nd deal with developing or interpreting solutions. Patterns then

onsider how well students performed on such types of questions

e.g., question_concepts). 

When designing the LSID approaches, the first step was to in-

estigate how CI algorithms could be used to improve the preci-

ion of learning styles identification. Two possible directions were

nvestigated in further detail. First, a data-driven approach could

e used where the problem of identifying learning styles from stu-

ent behavior data/patterns could be seen as a classification prob-

em. Second, we looked into how CI algorithms can improve exist-

ng literature-based approaches. When investigating the currently

eading approach, DeLeS ( Graf, Kinshuk et al., 2009 ), in more de-

ail, we found that DeLeS is based on the assumption that each

ehavior pattern contributes equally to the calculation of learn-

ng styles. While this is a reasonable assumption given the lack

n studies on each behavior pattern and its weight in the calcu-

ation process of learning styles, CI algorithms can address this is-

ue and can find optimal weights for behavior patterns based on

ata; hence approaching the identification of learning styles as an

ptimization problem. Accordingly, the proposed LSID approaches

nvestigate the use of CI algorithms for identifying learning styles

s a classification problem (described in more detail in Section

.1 ) and as an optimization problem (described in more detail in

ection 4.2 ). 

From a technical viewpoint, all development and evaluation of

he LSID approaches were done using the Windows 10 operating

ystems. The LSID approaches were developed using Microsoft’s Vi-

ual C ++ with the CLI extension and uses multithreading to im-

rove runtime. Massive parallelism was investigated using C ++ Ac-

elerated Massive Parallelism; however, this did not increase speed

y very much since the atomic operations, which can be paral-

elized in the LSID approaches, are all faster than the overhead of

S  
sing massive parallelism. C ++ /CLI was used in lieu of C ++ to fa-

ilitate targeting .NET platforms ( Microsoft, 2016) . 

.1. Improving learning style identification through classification 

There are many different classification algorithms; however, for

his research the use of ANNs is investigated with respect to its po-

ential to improve the precision of identifying learning styles. ANNs

ork well with rather small datasets ( Foody, McCulloch, & Yates,

995; Swingler, 1996 ), which is important for this line of research

s typical datasets are rather small. Furthermore, the problem can

asily be translated to the network structure of an ANN. To the

est of our knowledge, in previous works, only one study has in-

estigated the use of ANNs for identifying learning styles so far.

illaverde et al. (2006) have designed one ANN to identify three

ut of four learning style dimensions of the FSLSM and achieved

n accuracy of 69%. In our research, we propose LSID-ANN, which

ses four ANNs, one per learning style dimension. Such design has

he potential to improve the accuracy of learning style identifica-

ion as it allows identifying all four learning style dimensions of

he FSLSM and each ANN can focus on one separate task, namely

he identification of learning styles for the respective dimension. 

In LSID-ANN, each of its four ANNs uses the commonly used

onfiguration of a feed forward 3-layer perceptron. Each ANN has

s inputs the relevant behavior patterns for the respective learning

tyle dimension, as listed in Table 1 . Accordingly, the ANN for iden-

ifying the A/R dimension has 12 inputs, while for the S/I dimen-

ion the ANN has 13 inputs, for the V/V dimension the ANN has

 inputs and for the S/G dimension the ANN has 9 inputs. As the

nputs are of different scale, normalization was performed. Since

or all patterns 0 was a valid value this was used as the lower

ound. For the upper bound, for each behavior pattern the upper

hreshold value ( T up ) introduced in the study by Graf, Kinshuk et

l. (2009) was used. This threshold value considers the different

cale of each pattern and represents a high occurrence of behavior

or the respective pattern based on literature and adjusted based

n the characteristics of the course. Each ANN has a single output

hich produces a value from 0 to 1 and represents the identified

earning style value of the respective dimension. The number of

idden nodes is a control parameter and was optimized for each

NN (this process is described in Section 5.2 ). A sample of the to-

ography used for the V/V dimension is shown in Fig. 1 . 

Each ANN uses a supervised learning strategy to train and back-

ropagation as training algorithm. To train the ANN, in each iter-

tion, the ANN runs with the data of each student. Starting with

he input data from the first student (i.e., data about behavior pat-

erns), an output value (i.e., identified learning style) is produced.

his output value is then compared to the actual learning style

f that student (as identified by the ILS questionnaire ( Felder &

olomon, 1998 )). The difference between the output of the ANN
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Fig. 1. LSID-ANN topography for the V/V dimension. 
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and the actual learning style is referred to as error ( e ) and the pre-

cision is calculated as 1- e . Based on the error, the weights of the

ANN are corrected and the next student data are run through the

ANN. At the end of an iteration (once all student data ran through

the ANN), the fitness of the network is calculated to assess the

overall quality of the ANN in the given iteration. This fitness is

calculated as the average of the precision value over all students.

Afterwards, the next iteration is started until the termination con-

dition is met. For this research, the termination condition is se-

lected to promote finding the optimal solution. When a new best

fitness is found, the current iteration number ( I best ) is recorded

(e.g., 60 0 0th iteration). When another I best (e.g., 60 0 0) iterations

passed without finding a new best fitness, the algorithm stops. To

prevent early termination, a minimum of 10,0 0 0 iterations must

pass before the algorithm can terminate. 

4.2. Improving learning style identification through optimization 

While the previous section showed how learning style identi-

fication can be achieved through classification, this section intro-

duces our approaches to identify learning styles by the use of op-

timization algorithms, in particular an ant colony system, genetic

algorithm and particle swarm optimization. As described before,

the introduced learning style identification approaches (i.e., LSID-

GA, LSID-ACS and LSID-PSO) are all based on the existing lead-

ing learning style identification approach DeLeS ( Graf, Kinshuk et

al., 2009 ). In DeLeS, the assumption is made that each behavior

pattern contributes equally to the calculation process of learning

styles which is an assumption that is reasonable given the lack of

available studies on this issue but probably not optimal. The pro-

posed learning style identification approaches address this issue by

extending DeLeS in a way that optimization algorithms are used to

find the optimal weight for each behavior pattern. The given op-

timization problem has a rather large solution space with about

10 12 to 10 26 combinations, depending on each learning style di-

mension. Although brute force searching is effective for small solu-

tion spaces and guarantees finding a globally optimal solution they

become intractable as the solution space size increases ( Russell &

Norvig, 2010 ). Thus, to find the optimal pattern weights requires

a more efficient searching mechanism. Accordingly, GA, ACS and

PSO were selected given that they are commonly used optimiza-

tion algorithms and studies have shown that they are effective in
olving similar problems, particularly searching for optimal weight

ets ( Abido, 2002; Ericsson et al., 2002; Pothiya et al., 2010 ). In

he next paragraphs, DeLeS is introduced in more detail in order

o provide background information on how the proposed LSID ap-

roaches work. Subsequently, a general overview is provided on

ow the proposed LSID approaches work and after that, each al-

orithm is described separately in a designated subsection. 

To identify learning styles, DeLeS extracts behavior pattern data

rom the learning system’s database and translates the behavior

attern data into a learning style hint h . A hint value of 3 indi-

ates that the behavior pattern data provide a strong indication

or an active, sensing, visual or sequential learning style (accord-

ng to Table 1 ). A hint value of 2 indicates that the student’s be-

avior is average and therefore does not provide a specific hint to-

ards a learning style. A hint value of 1 indicates that the behav-

or pattern data provide a strong indication for a reflective, intu-

tive, verbal or global learning style (according to Table 1 ). A hint

alue of 0 indicates that no information about the student’s be-

avior is available with respect to the respective pattern. In order

o classify the behavior pattern data into learning style hints, an

pper and lower threshold has been derived from literature and

s used for each pattern. To calculate the learning style of a stu-

ent in a given learning style dimension, an average hint value is

alculated by summing up all hint values of all patterns relevant

or that dimension and dividing it by the number of patterns that

nclude available information (for the respective dimension). The

esulting value is then normalized, leading to a value between 0

nd 1, where 1 indicates a strong preference for an active, sensing,

isual or sequential learning style and 0 indicates a strong prefer-

nce for a reflective, intuitive, verbal or global learning style. 

Each LSID approach follows the exactly same overall process to

alculate learning styles as DeLeS, with only one difference. When

eLeS is calculating learning styles from hint values, it calculates

n average hint value where each hint from a behavior pattern

ontributes equally to the overall learning style value. The LSID ap-

roaches use different optimization algorithms to identify optimal

eights for each behavior pattern and therefore, when calculating

earning styles from hint values, a weighted average hint value is

omputed (instead of just an average hint value), where each hint

alue is multiplied by the optimal weight of the respective pattern.

In the following subsections, each algorithm is explained in fur-

her detail, focusing on how it has been designed to find optimal

eights of behavior patterns. 

.2.1. Using GA for weight optimization 

In LSID-GA, four genetic algorithms are used to identify the

eights of behavior patterns, each for one learning style dimen-

ion. The genome structure for each GA uses N gene values, where

 is the number of relevant behavior patterns for the respective

earning style dimension and therefore, each gene represents a rel-

vant behavior pattern in the respective learning style dimension.

ach gene is permitted to have an integer value from 1 to 100, rep-

esenting the weight of the respective pattern. Thus, each genome

s a whole provides a candidate solution, representing a set of

eights. The genome structure for the V/V dimension is shown in

ig. 2 . 

To calculate the fitness of a genome (and therefore a respective

olution), the error between the actual learning style (as identified

y the ILS questionnaire ( Felder & Solomon, 1998 )) and the calcu-

ated learning style for each student in a given dataset is computed

nd the average error over all students is used as fitness value.

he calculated learning style for each student is computed from

he relevant behavior patterns of the respective dimension, as de-

cribed in Section 4.2 , using the genome’s gene values as pattern

eights. 
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Fig. 2. Genome structure for V/V dimension. 
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LSID-GA uses well-known GA operators and works as follows.

uring initialization, the population is fully populated with P

enomes using random gene values as no initial information is

vailable on the potential quality of any weight value. For the se-

ection operator, the roulette wheel technique is used where the

robability of a genome being selected are equal to its fitness di-

ided by the total fitness of all genomes in the population. The

election operator selects P /2 genome pairs. Each genome may be

elected more than once; however, the same pairing is not permit-

ed within the same generation. The crossover operator uses uni-

orm crossover where each gene has a chance of being swapped

qual to the crossover weight. The mutation operator is applied to

ach of the new offspring and uses uniform mutation where each

ene has a chance of being mutated equal to the mutation weight.

here is a small chance that no crossover will occur, depending on

he crossover weight. In such case, at least one gene will be forced

o mutate in each genome to create new offspring. After crossover

nd mutation, the new genomes are merged into the population

nd the survival process culls the genomes with the lowest fitness

ntil the population is back to its original size ( P ). Then, a new

eneration starts until the termination condition is reached. 

The termination condition for LSID-GA is the same as for LSID-

NN and again was selected to promote finding an optimal solu-

ion. When a new best solution is found, the current generation

umber ( G best ) is recorded (e.g., 60 0 0th generation). LSID-GA ter-

inates when another G best (e.g., 60 0 0) generations passed with-

ut finding a new best solution. To prevent early termination, a

inimum of 10,0 0 0 generations must pass before LSID-GA can ter-

inate. 

.2.2. Using ACS for weight optimization 

In LSID-ACS, four ACSs are designed, each for identifying the

eights of patterns in one learning style dimension. ACS requires

he problem to be converted into a graph for the ants to traverse.

ccordingly, to find optimal pattern weights, a layered graph was

esigned as follows. The graph has a single start node and end

ode, where ants start and end their paths. In between the start

nd end node, there are N layers of nodes, representing the N rel-

vant patterns for the respective learning style dimension. Each

ayer consists of 100 nodes with values from 0.01 to 1 in incre-
ents of 0.01, representing the possible weight values for a re-

pective pattern. Each node in a layer is connected to every node

n the next layer (or end node) but is not connected to any node

f the same layer. When an ant has finished traversing the graph,

t therefore has selected a single node from each layer, and this

orms the candidate set of weights. A representation of the graph

or the V/V dimension is shown in Fig. 3 . 

To determine the quality of a path (from start node to end

ode), the same fitness function is used as in LSID-ANN and LSID-

A. Therefore, for each student in a given dataset the learning style

f the respective dimension is calculated from the relevant behav-

or patterns as described in Section 4.2 , using the node values of

he respective path as pattern weights. The error between the ac-

ual learning style and the calculated learning style for each stu-

ent is then computed and the average error over all students is

sed as fitness value for the given path. 

LSID-ACS works as follows: At the initialization stage, the lo-

al quality of the graph’s links are populated; however, since there

s no information on what weights might be good choices, each

f the values are set to 1. Furthermore, with no initial informa-

ion on the potential quality of weight values no candidate lists

re constructed and the ants can transition to any node in the

ext layer. Since the graph is unidirectional, the ants cannot re-

urn to a previously selected node during a single pass. After the

raph has been constructed and initialized, the population of ants

s built. Each ant is placed on the “Start” node and permitted to

raverse the graph using the pseudorandom proportional rule until

t reaches the “End” node. When an ant traverses a link, it con-

umes a portion of the pheromone in proportion to the consump-

ion ratio. The path from each ant is decoded into a set of optimal

eights and assessed by calculating its fitness value. Once all ants

ave traversed the graph and fitness values have been calculated,

f the best ant has a fitness value greater than the current global

est path then its path is saved as the current global best path.

he links along the global best path have their pheromone values

pdated in proportion to its fitness value. Finally, all the links in

he graph lose a proportion of pheromone in proportion to the

vaporation factor. Then, a new generation starts where ants are

gain traversing through the graph until the termination condition

s reached, which is identical to that described for LSID-ANN and

SID-GA. 

.2.3. Using PSO for weight optimization 

In LSID-PSO, four PSOs are designed, each for identifying the

eights of patterns in one learning style dimension. PSO requires

hat the solution space for the problem be defined as a hyperspace

r hypershape. For this research, an N-dimensional hypershape is

efined, where N is the number of behavior patterns for the learn-

ng style dimension under consideration. Each hypershape dimen-

ion represents the range of possible weights for the behavior pat-

erns and so each dimension is bounded with a minimum value of

.01 and a maximum value of 1. As such, the location of a parti-

le in the hypershape represents a set of weights. Fig. 4 shows the

elationship between the particle’s coordinates in the hypershape

nd the behavior patterns for the V/V learning style dimension. 

To determine the quality of a candidate solution, in this case

 specific position in the hypershape, the same fitness function is

sed as in LSID-ANN, LSID-GA and LSID-ACS. Therefore, for each

tudent in a given dataset the learning style of the respective di-

ension is calculated from the relevant behavior patterns as de-

cribed in Section 4.2 , using the coordinate values of the respective

osition in the hypershape as pattern weights. The error between

he actual learning style and the calculated learning style for each

tudent is then computed and the average error over all students

s used as fitness value for the given position in the hypershape. 
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Fig. 3. Graph for finding set of weights for V/V dimension. 

Fig. 4. LSID-PSO’s coordinate to pattern relationship for V/V learning style dimen- 

sion. 
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LSID-PSO works as follows: the population of particles is ini-

tialized with each particle receiving a random position and veloc-

ity. For each position coordinate, a random real value is picked be-

tween the hypershape bounds (0.01 to 1.00). Each component of

the initial velocity vector is a random value from 0 to Vmax. After

initialization, each particle is assessed using the fitness function

and the global best position is updated to the position of the par-

ticle with the best fitness. The algorithm’s main processing loop

is then started. Each generation the particles are moved and have

their velocity adjusted as previously described ( Section 3.4 ). After
ach generation, each particle is re-assessed using the fitness func-

ion. If there has been any improvement, the global best position

nd the particles’ individual best position are updated. This pro-

ess continues until the termination condition is reached, which is

dentical to that described for LSID-ANN, LSID-GA and LSID-ACS. 

. Evaluation 

To evaluate the proposed LSID approaches, the dataset used for

ach approach is the same dataset that has been used for eval-

ating DeLeS by Graf, Kinshuk et al. (2009) . The dataset consists

f both the behavior data from the learning management system

oodle and learning styles. The process used to acquire the behav-

or data from Moodle is described as follows. The data was gath-

red from 127 students in an undergraduate object-oriented mod-

lling course held at a university in Austria. Moodle (2016) was

sed to host the course, and the built-in logging functionality of

oodle was used to acquire the data. One extension was added

o Moodle to track how often students revise their self-assessment

nd exercise answers. Additionally, the Moodle methods used to

istinguish between particular types of learning objects and ques-

ions were extended to make it easier to gather the data. 

For gathering learning styles data, the ILS questionnaire was

sed ( Felder & Solomon, 1998 ). In order to ensure that the iden-

ified learning styles are reliable, any student who spent less

han 5 min filling out the questionnaire was eliminated from the

ataset. In addition, only data from students who submitted more

han half of the assignments and took the final exam were used,

n order to ensure that behavior data were only used from stu-

ents who tried completing the course rather than from students

ho dropped out early. After these removals, the final dataset con-

isted of 75 students. It should be noted that this dataset is of

imilar size or larger than those used in related works: Latham et

l. (2012) used 75–95 students, García et al. (2007) used 77 stu-
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ents, Özpolat and Akar (2009) used 40 students and Cha et al.

2006) used 23–49 students. 

The evaluation of the LSID approaches consists of three parts.

irst, to find the optimal values for the parameters of each CI al-

orithm, an iterative experimental process was used. Second, an

xperimental process was also used to test overfitting reduction

trategies and find optimal parameters for those strategies. Third,

sing the optimal parameters for each algorithm and the optimal

verfitting reduction strategies, final results were obtained for each

SID approach. 

In order to ensure generalizability to any dataset, a 10 fold cross

alidation process was used for finding the optimal parameters,

nding optimal overfitting reduction strategies, and getting the fi-

al results. In a 10 fold cross validation, the algorithm is run 10

imes, each time with a different training and assessment set, and

he results are averaged over the 10 runs/folds. To build the differ-

nt training and assessment sets, the dataset is split into 10 equal

arts. For the first fold, the assessment set is comprised of the first

/10th of data and the training set uses the remaining data; for the

econd fold, the assessment set is comprised of the second 1/10th

f data and the training set uses the remaining data; and so on. 

.1. Performance metrics 

The performance of the proposed LSID approaches is measured

sing four metrics. The four metrics are SIM (similarity), ACC (ac-

uracy), LACC (lowest accuracy) and %Match (percentage of stu-

ents identified with reasonable accuracy). 

The first metric (SIM) is commonly used in literature to mea-

ure performance for learning style identification ( García et al.,

0 07; Graf, Kinshuk et al., 20 09; Özpolat & Akar, 20 09 ). SIM works

y dividing learning styles on each dimension into three regions.

or example, for the A/R dimension, these three regions would be

ctive, balanced and reflective. SIM returns 1 when the actual and

dentified learning styles are in the same region, 0.5 when they are

n adjacent regions (i.e., one value is neural and the other value is

ointing towards a particular learning style), and 0 when they are

n opposite regions. SIM values are calculated for each student and

hen an average SIM value is built to measure the accuracy of the

earning style identification approach. Formula (6 ) shows the calcu-

ation for SIM where the function R returns the region for a learn-

ng style value, LS id is the identified learning style, LS actual is a stu-

ent’s actual learning style and LS B is the value returned by R for

he balanced region. As suggested by Graf, Kinshuk et al. (2009) , a

hreshold of 0.25 and 0.75 is used in this research to divide learn-

ng style values into the three regions, for the ILS questionnaire

esults and the results of the LSID approaches alike. 

IM = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 . 0 i f R ( L S id ) = R ( L S actual ) 

0 . 5 i f R ( L S id ) � = R ( L S actual ) and 

( R ( L S id ) = L S B or R ( L S actual ) = L S B ) 

0 . 0 otherwise 

(6) 

hile SIM is commonly used in literature, it has a drawback of re-

uced accuracy due to classifying results into regions. While some

pproaches for identifying learning styles return learning style re-

ions as results (e.g., Bayesian networks), LSID approaches are ca-

able of returning concrete learning style values. Accordingly, we

re able to measure the exact difference between the result from

SID approaches and the actual learning style, leading to a more

ccurate performance metric, which we call ACC. As with SIM, ACC

s calculated for each student and an average ACC is built as de-

ned in Formula (7 ) where n is the number of students in the re-

pective data set and LS actual,x and LS id,x are the actual and identi-
ed learning style values for the x th student in the set. 

CC = 

∑ n 
x=1 1 − | L S actual,x − L S id,x | 

n 

(7) 

While the above-mentioned performance metrics provide de-

ails on how accurately a proposed approach is able to identify

earning styles for students on average, the next two performance

etrics, LACC and %Match, investigate the accurate identification of

earning styles for each single student. Looking into the accuracy of

n approach for a single student is important since misidentifying

 student’s learning style leads to severe consequences for the re-

pective student, in terms of providing him/her with mismatched

aterial in an adaptive learning system or with misleading advice

rom a teacher who is misinformed by the system about the stu-

ent’s learning style. LACC is the lowest ACC value within a set

f students (as shown in Formula (8) ) and therefore measures the

orst case scenario for any student. %Match measures the percent-

ge of students who were identified with reasonable accuracy (as

hown in Formula (9) ). A threshold for reasonable accuracy was

alculated by considering the range of learning style values in the

ataset and assuming that ACC has to be at least higher than half

f this range. Accordingly, the ACC threshold is assumed to be 0.5.

ACC = min 

0 <x<n 
ACC 

(
L S actual,x , L S id,x 

)
(8) 

 Match = 

∑ n 
x =1 

{ 

0 . 0 i f AC C 
(
L S actual,x , L S id,x 

)
< 0 . 5 

1 . 0 otherwise 

n 

(9) 

.2. Parameter optimization 

The process to optimize the parameters for all CI algorithms is

escribed as follows, differing only by the parameters of each algo-

ithm. As a first step, a literature review was performed to find ei-

her a suitable range or principles for each parameter, resulting in

 set of values for each parameter. A mid-range value was selected

rom the set of values to act as a default value (shown in bold),

ith the exception of the Vmax parameter for PSO as the highest

alue is clearly recommended. Then, for the first parameter, the re-

pective CI algorithm is executed iteratively for each value in the

et while using the default value for the remaining parameters. The

arameter value which produces the best result is considered the

ptimal choice and used for all subsequent executions. This process

s repeated for each parameter. 

The control parameters for the ANN are optimized in the fol-

owing order: number of hidden node ( H ), learning rate ( η), mo-

entum ( m ) and training mode. Literature suggests that the num-

er of hidden nodes should be between log T (where T is the

ize of the training set) ( Wanas, Auda, Kamel, & Karray, 1998 ) and

 × the number of inputs ( Swingler, 1996 ). In our case, the lower

ound is log 67 or 1.82. To maximize the chance to find an optimal

alue, the lower bound is reduced to 1 instead of being rounded up

o 2. The upper bound varies by learning styles dimension since

he number of behavior patterns (inputs) varies by learning styles

imension. Accordingly, values from 1 to 24 for A/R, 1 to 26 for

/I, 1 to 12 for V/V and, 1 to 18 for S/G were assessed, in steps

f 1. For learning rate, a low value is suggested ( Swingler, 1996 )

o that the ANN can converge to an optimal solution. The learning

ates assessed were between 0.01 and 0.1, in steps of 0.01, lead-

ng to the following values: (0.01, 0.02, 0.03, 0.04, 0.05 , 0.06, 0.07,

.08, 0.09, 0.1). Similarly, momentum should be low so that the

NN does not skip good areas, but needs to be large enough to

id in escaping local optima ( Swingler, 1996 ). The values assessed

or momentum were between 0 and 0.1, in steps of 0.01, leading

o the following values: (0.00 0.01, 0.02, 0.03, 0.04, 0.05 , 0.06, 0.07,
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Table 3 

LSID-ANN optimal parameter settings. 

Number of 

hidden nodes 

Learning rate Momentum Training mode 

A / R 1 0 .08 0 .10 Individual 

S / I 5 0 .06 0 .09 Individual 

V / V 8 0 .08 0 .06 Individual 

S / G 2 0 .07 0 .01 Individual 

Table 4 

LSID-GA optimal parameter settings. 

Population Crossover weight Mutation weight 

A / R 200 0 .80 0 .03 

S / I 100 0 .90 0 .03 

V / V 100 0 .80 0 .03 

S / G 400 0 .70 0 .04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

LSID – ACS optimal parameter settings. 

Population Exploitation Evaporation ratio Consumption ratio 

A / R 100 0 .00 0 .80 0 .20 

S / I 200 0 .00 0 .80 0 .20 

V / V 50 0 .00 0 .90 0 .05 

S / G 200 0 .00 0 .50 0 .20 
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0.08, 0.09, 0.1). Both individual and ensemble training modes are

assessed for LSID-ANN with individual used as the default. The op-

timal parameters for LSID-ANN are shown in Table 3 . 

The control parameters optimized for the GA are: population

size ( P ), crossover weight ( C ) and mutation weight ( M ). In gen-

eral, for larger populations it is suggested to use lower crossover

and mutation weights and vice versa ( Grefenstette, 1986; Srinivas

& Patnaik, 1994 ); however, since no firm relationship is known be-

tween these parameters a variety of configurations has been as-

sessed. Grefenstette (1986) recommends either very low or very

high populations. His work examined up to 160 genomes (but

does not recommend this as a strict upper limit). Therefore, we

expanded on this upper limit to 400 in order to maximize the

chances of finding an optimal setting. This results in a set of pop-

ulation values of (25, 50, 100, 150, 200, 400). The crossover weight

is recommended to be above 0.6 ( Grefenstette, 1986; Srinivas &

Patnaik, 1994 ), therefore the set of values assessed was (0.6, 0.7,

0.8 , 0.9). Mutation weight is recommended to be between 0.05

and 0.01 ( Grefenstette, 1986 ) or even between 0.05 and 0.0 0 01

( Srinivas & Patnaik, 1994 ). Accordingly, the set of values assessed

was (0.0 0 01, 0.0 01, 0.01, 0.02, 0.03, 0.04, 0.05). The optimal param-

eters for LSID-GA are shown in Table 4 . 

The following parameters are optimized for the ACS: popula-

tion size ( P ), local quality weight ( α), pheromone weight ( β), ex-

ploitation parameter ( q 0 ), evaporation ratio ( ρ), and consumption

ratio ( τ 0 ) ( Dorigo & Gambardella, 1997b ). For the population size,

Stutzle et al. (2011) examined values up to 400 and found that val-

ues above 100 generally performed poorly; however, Dorigo and

Birattari (2010) state that the optimal population size is prob-

lem dependent. Therefore, the maximum value for population was

slightly expanded to 200 to maximize the chance of optimization

giving the set (25, 50, 100, 200). As discussed previously, there is

no local information available to determine the inherent quality for

any particular pattern weight. Therefore, the local information for

all links is set to 1. This means that an ant’s decision is only based

on the amount of pheromone on a link and therefore, there is no

need to optimize α and β parameters, so both are set to 1. In addi-

tion, the lack of local information significantly changes the way ex-

ploitation works in the pseudorandom proportional rule. Normally,

when exploiting an ant takes the link ( l ) with the highest overall

quality (see Formula (1) ) ( Dorigo & Gambardella, 1997a ) which is

a function of local information and pheromone. For this problem,

as the local information is always 1, the ant will take the link with

the highest pheromone. Since this is such a significant change to

the pseudorandom proportional rule, the exploitation parameter is

also evaluated as off ( q 0 = 0). In general, the exploitation param-

eter is preferred to be high so that the ants will use previously

found good solutions ( Dorigo & Gambardella, 1997b ) and accord-
ngly, the exploitation parameter is assessed with the set of val-

es (0.0, 0.5, 0.6, 0.7 , 0.8, 0.9). When evaluated by Stutzle et al.

2011) , it was found that for the evaporation ratio values higher

han 0.6 performed best with slightly lower values performing not

uch worse. Since Dorigo and Gambardella (1997a) suggested that

he evaporation ratio may be problem specific, the set of values

as expanded to include 0.5 giving the set (0.5, 0.6, 0.7 , 0.8, 0.9).

he consumption ratio parameter is recommended to be 0 < τ 0 ≤ 1

 Dorigo & Birattari, 2010 ). Initially, the intent was to evaluate the

alues from 0.1 to 1.0 in increments of 0.1; however, for this prob-

em, values above 0.3 were found to reduce pheromone trails very

uickly to near zero thereby suggesting that low values may be

est, and therefore, two values lower than 0.1 were added. So, the

onsumption ratio values assessed were (0.01, 0.05, 0.10, 0.20, 0.30,

.40, 0.50 , 0.60, 0.70, 0.80, 0.90). The optimal parameter values

omputed for LSID-ACS are shown in Table 5 . 

The following parameters are optimized for PSO: population

ize ( P ), acceleration rates ( c1 and c2 ), inertia ( w ) and maximum

elocity ( VMax ). In much of the research on PSO, a population size

f 100 or less is used ( Clerc & Kennedy, 2002; Eberhart & Kennedy,

995; Shi & Eberhart, 1998 ); however, this is not recommended as

n absolute maximum and so was expanded to 400 resulting in

 set of values to be assessed of (25, 50, 75, 10 0, 20 0, 40 0). The

ecommendation is that acceleration rates should be found exper-

mentally as they are problem specific ( Clerc & Kennedy, 2002 ).

he range of values for the individual acceleration rate ( c1 ) is 0

o 1 ( Clerc & Kennedy, 2002 ) and so the values assessed were (0.0,

.25, 0.5 , 0.75, 1.0). The global acceleration rate ( c2 ) should satisfy

 < c2 ≤ 1 ( Clerc & Kennedy, 2002 ), 0.0 is excluded as the global

est position must always be considered, and so the set of values

ssessed were (0.25, 0.5 , 0.75, 1.0). The recommended range for

nertia is 0.9 to 1.2 ( Shi & Eberhart, 1998 ); however, this was ex-

anded slightly to allow for a greater chance of optimization giving

he set of values of (0.75, 0.9, 1.0 , 1.1, 1.2). For bounded problems,

 good initial value for the maximum velocity ( Vmax ) is recom-

ended to be set equal to the extent of the bounds ( Xmax ), how-

ver, a trial-and-error process is recommended to refine the value

 Shi & Eberhart, 1998 ). The bounds for the problem in this research

re the minimum (0.01) and maximum (1.0) weights, giving an

max = 0.99. Therefore, the default value for Vmax is set to 0.99 in-

tead of a mid-range value. There is no reason to assess a value of

max > Xmax as this has the same effect as Vmax = Xmax. If a par-

icle has a velocity ( v ) such that v ≥ Xmax, it simply hits the hyper-

hape boundary. However, there is a reason to assess Vmax ≤ Xmax

s this promotes exploitation of promising areas by preventing par-

icles from flying away from them too quickly. The set of Vmax val-

es was found by iteratively multiplying Xmax by the values (0.05,

.1, 0.25, 0.5 and 1.0) giving a set of value for Vmax of (0.0495,

.099, 0.2475, 0.495, 0.990 ). The optimal parameters for LSID-PSO

re shown in Table 6 . 

.3. Overfitting reduction strategies 

With CI algorithms, overfitting is a common problem where

he solution is fit to noise in the training data and is not gener-

lizable to other data. Such overfitting reduces the quality of the

ound solution (i.e., reduces the precision of learning styles iden-
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Table 6 

LSID-PSO optimal parameter settings. 

Population Acceleration 

Global Individual Inertia Vmax 

A / R 400 1 .00 1 .00 0 .75 0 .990 

S / I 100 1 .00 0 .25 1 .20 0 .990 

V / V 400 1 .00 0 .50 1 .00 0 .099 

S / G 50 1 .00 1 .00 0 .90 0 .495 

Table 7 

Distribution of learning style data. 

Active Sensing Visual Sequential 

Data used in this research 52 .7% 63 .0% 81 .9% 53 .4% 

Felder and Spurlin (2005) 47–70% 46–81% 66–91% 45–85% 
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Table 8 

LSID –ANN overfitting settings. 

Stratification FEP G min λ

A / R On Off – 0 .05 

S / I On Off – 0 .05 

V / V On Off – 0 .01 

S / G Off Off – 0 .10 

Table 9 

LSID –GA overfitting settings. 

Stratification FEP G min 

A / R On On 100 

S / I On On 25 

V / V On On 75 

S / G On On 25 

Table 10 

LSID –ACS overfitting settings. 

Stratification FEP G min 

A / R On Off –

S / I On Off –

V / V On Off –

S / G On Off –

Table 11 

LSID –PSO overfitting settings. 

Stratification FEP G min 

A / R On Off –

S / I On Off –

V / V On Off –

S / G On Off –
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ification). However, techniques exist which can reduce overfitting

nd three such techniques were investigated for this study: stratifi-

ation ( Kohavi, 1995 ), future error prediction (FEP) ( Mitchell, 1997 )

nd weight decay ( Krogh & Hertz, 1992 ). 

Stratification works by ensuring the training sets and assess-

ent sets are picked such that they have a similar distribution to

xpected future datasets. Thus, even if the algorithm’s solution is

verfit it will be overfit to likely future data and so will be effective

nyway. The distribution of learning style data used in this study

s consistent with the range of values found by Felder and Spurlin

2005) in their summary of several studies, as shown in Table 7 .

herefore, it can be assumed that future data will be distributed

imilarly. To ensure that each training set and assessment set has

 proper distribution, students are first grouped in accordance to

heir preference (e.g., all students with an active preference are

rouped together). Then for each fold’s assessment set, students

re picked so that the percentage of students for each learning

tyle preference (e.g., active, reflective, sensing, etc.) is as close as

ossible to the percentage of students of that learning style pref-

rence in the overall dataset. For example, for an assessment set

onsisting of 7 students for the A/R dimension, 4 active students

re selected as this gives the closest possible percentage to 52.7%.

tratification is assessed as either on or off. 

FEP functions by attempting to detect when overfitting starts to

ccur and then stop the algorithm’s processing. This is done by ex-

racting a validation set from the training set and using it to repre-

ent future data samples. Whenever a new best solution is found,

 result is produced using the validation set. If this validation set

esult is lower than the previous validation set’s result, it indicates

hat overfitting might occur and the algorithm is stopped. FEP is

ssessed as either on or off. In early generations, results are likely

o be unstable. To prevent this instability from causing early termi-

ation, a parameter G min was used, indicating the minimum num-

er of generations the algorithm will run. The minimum number of

enerations used by FEP overrides the minimum number of gener-

tion requirement used by the termination condition. As no liter-

ture could be found suggesting values for G min , the values were

ound through experimentation, resulting in a set of values of (25,

0, 75, 100, 200, 300, 500) for G min . 

Weight decay is a technique specific to ANNs. The inspiration

or weight decay comes from the observation that lower weight

alues for the neural links have been shown to be associated with

etter generalization in ANNs ( Krogh & Hertz, 1992 ). With weight

ecay a percentage (0 ≤ λ< 1) of the weight of each neural link

s lost each generation. Therefore, a weight value on a neural link

tays only high if there is a consistent pressure from many of the

amples to keep it elevated. Although the hypothetical range of

alues for weight decay can rise to just less than 1.0, in practice

eight decay is recommended to be low (Krogh & Hertz) and so
he possible parameter values were from 0.0 to 0.1 in increments

f 0.01, with 0.0 be used for considering it to be off. 

Stratification and FEP were used for each algorithm; whereas,

eight decay was only used with the ANN as it is ANN specific. For

 SID-GA, L SID-ACS and L SID-PSO, each combination of stratification

nd FEP was assessed (i.e., no overfitting reduction technique, only

tratification, only FEP, and stratification and FEP). For LSID-ANN,

eight decay was investigated first and the optimal weight decay

etting was used when investigating stratification and FEP, where

gain all combinations were investigated. The optimal overfitting

eduction settings are shown in Tables 8 –11 for L SID-ANN, L SID-

A, LSID-ACS and LSID-PSO, respectively. 

.4. Results and discussion 

This subsection presents and discusses the results of each LSID

pproach, using the optimal parameters and overfitting reduction

ettings. First, a comparison is made between LSID and related

orks using the SIM metric. Afterwards, a comparison is made be-

ween DeLeS, the top approach according to SIM, and the LSID ap-

roaches with the remaining metrics. Then, the practical implica-

ions of the results are discussed. This is followed by observations

ade on overfitting reduction strategies and lastly performance re-

ated issues for each algorithm are discussed. 

As most related works use the SIM metric, the results of the

SID approaches were first compared to respective related works

ased on the SIM metric. Accordingly, the LSID approaches were

ompared to DeLeS ( Graf, Kinshuk et al., 2009 ), a Bayesian network

pproach ( García et al., 2007 ) and an NBTree approach ( Özpolat &

kar, 2009 ) (shown in Table 12 ). The other related works are not

ncluded in the comparison, because they either have no evalua-

ion ( Carmona et al., 2008 ), use simulated data ( Dorça et al., 2013 )
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Table 12 

Comparison of SIM results (ranks in parentheses, top result bolded). 

Algorithm SIM 

A/R S/I V/V S/G Average 

LSID-ANN 0 .802 (2) 0 .741(6) 0 .727 (5) 0 .825 (1) 0 .774 (4) 

LSID-GA 0 .781 (5) 0 .781 (1) 0 .755 (4) 0 .818 (2) 0 .784 (1) 

LSID-ACS 0 .804 (1) 0 .762 (4) 0 .771 (1) 0 .785 (4) 0 .781 (2) 

LSID-PSO 0 .801 (3) 0 .755 (5) 0 .756 (3) 0 .810 (3) 0 .781 (2) 

DeLeS ( Graf, Kinshuk et al., 2009 ) 0 .793 (4) 0 .773 (2) 0 .767 (2) 0 .733 (5) 0 .767 (5) 

Bayesian network ( García et al., 2007 ) 0 .580 (7) 0 .770 (3) – 0 .630 (7) 0 .660 (7) 

NB tree ( Özpolat & Akar, 2009 ) 0 .700 (6) 0 .733 (7) 0 .533 (6) 0 .733 (5) 0 .675 (6) 

Table 13 

Comparison of ACC results (ranks in parentheses, top result bolded). 

Algorithm ACC 

A/R S/I V/V S/G Average 

LSID-ANN 0 .802 (3) 0 .790 (4) 0 .840 (1) 0 .797 (1) 0 .807 (1) 

LSID-GA 0 .795 (5) 0 .796 (2) 0 .794 (3) 0 .774 (2) 0 .790 (3) 

LSID-ACS 0 .819 (1) 0 .797 (1) 0 .799 (2) 0 .737 (4) 0 .788 (4) 

LSID-PSO 0 .805 (2) 0 .794 (3) 0 .796 (4) 0 .768 (3) 0 .791 (2) 

DeLeS 0 .799 (4) 0 .790 (4) 0 .788 (5) 0 .702 (5) 0 .770 (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14 

Comparison of LACC results (ranks in parentheses, top result bolded). 

Algorithm LACC 

A/R S/I V/V S/G Average 

LSID-ANN 0 .610 (1) 0 .575 (2) 0 .656 (1) 0 .613 (1) 0 .614 (1) 

LSID-GA 0 .584 (4) 0 .557 (3) 0 .541 (2) 0 .522 (3) 0 .551 (2) 

LSID-ACS 0 .599 (2) 0 .583 (1) 0 .534 (3) 0 .426 (4) 0 .536 (4) 

LSID-PSO 0 .596 (3) 0 .551 (4) 0 .482 (4) 0 .524 (2) 0 .538 (3) 

DeLeS 0 .435 (5) 0 .389 (5) 0 .226 (5) 0 .134 (5) 0 .296 (5) 

Table 15 

Comparison of %Match results (ranks in parentheses, top result bolded). 

Algorithm %Match 

A/R S/I V/V S/G Average 

LSID-ANN 0 .986 (4) 0 .961 (3) 0 .986 (2) 0 .986 (1) 0 .980 (1) 

LSID-GA 0 .986 (4) 0 .946 (5) 0 .936 (3) 0 .916 (3) 0 .946 (4) 

LSID-ACS 1 .0 0 0 (1) 0 .971 (1) 0 .909 (4) 0 .879 (5) 0 .940 (5) 

LSID-PSO 0 .988 (3) 0 .971 (1) 0 .909 (5) 0 .943 (2) 0 .953 (3) 

DeLeS 0 .987 (2) 0 .960 (4) 0 .987 (1) 0 .880 (4) 0 .954 (2) 
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or can only classify a subset of students ( Cha et al., 2006 ). Also, the

learning style identification approach in Oscar ( Latham et al., 2012 )

was not included in the comparison since that approach uses be-

haviors from dialogs between students and the natural language

conversational agent Oscar, which makes it very specific to Oscar

(or other systems that use dialogs and natural language conversa-

tional agents). The comparison shows that in each learning style

dimension, an LSID approach achieved the highest results, and all

of the LSID approaches are better than the related works when av-

eraging over all dimensions. 

Since the SIM metrics is not as accurate as ACC and we also

aim at investigating the accurate identification of learning styles

for each single student, raw results from DeLeS were obtained to

calculate ACC, LACC and %Match for DeLeS, as DeLeS has clearly the

best results in comparison to the other related works. Accordingly,

the LSID approaches were compared to DeLeS with respect to the

ACC, LACC and %Match metrics and results are shown in Tables 13–

15 , respectively. In the following paragraphs, the results from these

three metrics are discussed in more detail. 

In the A/R dimension, LSID-ACS is the top approach as it

achieved the highest values in the ACC and %Match metrics, and

for the LACC metric, it is on rank two slightly behind LSID-ANN.

For the S/I dimension, LSID-ACS is the top approach again in all

metrics (being tied with LSID-PSO in the %Match metric). With

respect to the V/V dimension, LSID-ANN is the leading approach,

with the top result in the ACC and LACC metrics and ranked second

slightly behind DeLeS in the %Match metric. Lastly, for the S/G di-

mension, LSID-ANN is the best approach, achieving the highest re-

sults in every metric. When considering the average results across

all learning style dimensions, LSID-ANN is the top approach in ev-

ery metric. 

When looking at the results from a practical point of view, even

small improvements in the precision and accuracy of learning style

identification can make a significant difference for students. When

learning styles are used, for example, to provide students with ad-

vice and recommendations during the learning process, either by a

teacher or an adaptive learning system, or simply to make students

aware of their learning styles and related strengths and weak-

nesses, a poor identification of a student’s learning style can have

severe consequences for the student such as providing the student

with mismatched materials in an adaptive learning system or with

misleading advice from a teacher. When comparing the results of
he best L SID approach, L SID-ANN, with DeLeS, it can be seen from

able 13 that LSID-ANN identifies learning styles on average with

n accuracy of 80.7%, which is a 3.7 percent point increase com-

ared to DeLeS. While this increase seems fairly small, every in-

rease means a more accurate identification of students’ learning

tyles and accordingly, more accurate information, interventions

nd advice for students. Furthermore, this increase is an average

alue across all students and therefore, can lead to a significant

ifference for individual students. The results for the LACC and

Match metrics illustrate this significant difference in more detail

s these metrics focus on the performance of the approaches con-

idering individual students. As mentioned before, LACC measures

he worst case scenario for a student in terms of the lowest ACC

alue for any student. As can be seen in Table 14 , the average LACC

alue for DeLeS is 29.6% while it is 61.4% for LSID-ANN. An accu-

acy of 29.6% means, for example, that if a student’s learning style

s very active (i.e., a value of 1 on a scale from 0 to 1, where 1 rep-

esents a strong active learning style and 0 represents a strong re-

ective learning style), the student’s learning style would be iden-

ified with a value of 0.296, which represents a moderate reflec-

ive learning style. Such misidentification would have severe con-

equences for a student. In contrast, LSID-ANN would identify the

earning style of the same student as a value of 0.614, which rep-

esents a mild active learning style. While this worst case sce-

ario is still not optimal, the misidentification is far less severe and

emonstrates a significant improvement for the student. For the

Match metric, which shows the percentage of students who were

dentified with reasonable accuracy, DeLeS already achieved rather

igh results with an average %Match value of 95.4%, as shown in

able 15 . However, LSID-ANN achieved an average value of 98.0%,

hich is a percent point increase of 2.6. In practical terms, this

eans that when the learning styles of 100 students are identified,
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Table 16 

Average number of generations before termination. 

Algorithm A/R S/I V/V S/G 

LSID-ANN 10 ,0 0 0 10 ,0 0 0 10 ,0 0 0 10 ,0 0 0 

LSID-GA 32 ,698 27 ,509 10 ,0 0 0 27 ,295 

LSID-ACS 27 ,745 25 ,311 11 ,307 26 ,907 

LSID-PSO 10 ,0 0 0 10 ,0 0 0 10 ,0 0 0 10 ,0 0 0 
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eLeS identifies the learning styles of 95 students with reasonable

ccuracy and LSID-ANN identifies the learning styles of 98 students

ith reasonable accuracy. Again, even when the difference in re-

ults seems rather small, it can have a significant effect for single

tudents. 

The next two paragraphs provide further discussion on the

se of overfitting reduction techniques and algorithm performance.

ith respect to overfitting reduction, weight decay was beneficial

y improving the LSID-ANN results in every learning style dimen-

ion. Stratification also improved the results for every algorithm

nd learning style dimension except for LSID-ANN in the S/G di-

ension. As this was the only algorithm and dimension where

tratification seems to have not improved the results, an addi-

ional experiment was performed for LSID-ANN with weight decay

urned off (i.e., λ set to 0.0) and stratification turned on. The result

or ACC was 0.795 which compares slightly favourably to the result

ith no overfitting reduction technique used at all (ACC = 0.792).

hus, stratification is useful in all instances; however, for the S/G

imension weight decay provides sufficient overfitting reduction so

s to make stratification unnecessary. FEP only provided an im-

rovement for LSID-GA. The drawback to FEP is that it reduces the

raining set size by 10%, so it is possible with a larger data set that

EP might be more helpful. 

Several observations were made on algorithm performance

tarting with examining the average number of generations com-

leted by the algorithm before terminating (shown in Table 16 ).

ince the solution space for the V/V dimension is the smallest, the

umber of generations required is lowest. The minimum number

f generations (10,0 0 0) is only exceeded in 3 of 10 folds when us-

ng L SID-ACS. L SID-ANN and L SID-PSO never exceeded the mini-

um number of generations for any learning style dimension. For

SID-ANN, no algorithmic issues could be found suggesting that it

imply does not require that many generations to train success-

ully. For LSID-PSO, it seems that particles adopted partially inef-

cient trajectories based on the relative closeness of the individ-

al and global best positions. When the individual and global best

ositions were close, the particle would tend to orbit them ellipti-

ally. When the individual and global best positions are distant, the

articles tend towards a flat trajectory between both points. Thus,

SID-PSO quickly stopped finding good solutions and so terminated

t the minimum ( Dorigo & Gambardella, 1997b ). For LSID-GA, the

umber of unique values was examined on a gene by gene basis

o ensure that diversity was being maintained similar to the tech-

ique used by Leung, Gao, and Xu (1997) for binary-encoded GA.

heir technique looks at how many genes ( g ) have the same value

hroughout the entire population and then define diversity ( d ) as

hown in Formula (10) where G is the total number of genes. Di-

ersity was found to be consistently equal to G , i.e. 100% diverse,

ntil close to the termination point. 

 = G − g (10) 

. Conclusions 

This paper presented four automatic approaches (i.e., LSID-ANN,

 SID-GA, L SID-ACS and L SID-PSO) for identifying learning styles

rom the behavior of students in learning management systems,

sing four computational intelligence (CI) algorithms, namely an
rtificial neural network, genetic algorithm, ant colony system and

article swarm optimization. An evaluation with data from 75 stu-

ents was conducted, demonstrating the overall precision of the

pproaches for each of the four learning style dimensions of the

elder-Silverman Learning Style Model (FSLSM) (1988) as well as

he accurate identification of learning styles for each single stu-

ent. 

The results for the proposed approaches were compared to ex-

sting approaches using the similarity (SIM) metric, which is com-

only used in research on identifying learning styles ( García et al.,

007; Graf, Kinshuk et al., 2009; Özpolat & Akar, 2009 ). Based on

IM, the best solution for each of the four FSLSM dimensions al-

ays came from one of the proposed LSID approaches and on av-

rage, all LSID approaches outperformed the existing approaches.

he results for the LSID approaches were then compared to the

xisting approach with the best SIM values, DeLeS ( Graf, Kinshuk

t al. 2009 ) using the three metrics: accuracy (ACC), lowest ac-

uracy (LACC) and percentage matched with reasonable accuracy

%Match). With respect to ACC, LSID-ACS achieved the best results

n the A/R and S/I dimensions while LSID-ANN obtained the best

esults in the V/V and S/G dimensions. For LACC, LSID-ACS outper-

ormed the other approaches in the S/I dimension and LSID-ANN

utperformed the other approaches in the remaining three dimen-

ions. For %Match, LSID-ACS was best in the A/R and S/I dimen-

ions, LSID-ANN was best in the S/G dimension and DeLeS was

est (by a value of 0.01 over LSID-ANN) in the V/V dimension.

ooking at the results as an average across all four FSLSM dimen-

ions, LSID-ANN achieved the best results in all three metrics. 

By identifying students’ learning styles with higher accuracy

nd with less mismatches for single students, adaptive learning

ystems can use this learning style information to provide more ac-

urate personalization, leading to even higher learning satisfaction

 Popescu, 2010 ), improved performance ( Ford & Chen, 2001 ) and a

eduction in the time to learn ( Graf, Chung, et al., 2009 ). Further-

ore, students can directly benefit from a more precise identifica-

ion of learning styles by being able to capitalize on their strengths

ith respect to learning styles, and by understanding their weak-

esses. Additionally, teachers can use this learning style informa-

ion to provide more accurate advice to their students, which is

gain more helpful for students the more accurate the learning

tyle identification is. 

Future work deals with the practical implementation of the pro-

osed LSID approaches as well as with future research work. In or-

er to make the LSID approaches useful for educators and learners,

e already started with the development of a plugin for Moodle

o support the identification of learning styles in online courses

osted within Moodle. Furthermore, we plan to expand the devel-

pment of plugins also to other LMSs. Future research work deals

ith investigating the applicability of the proposed approaches to

dentify other student characteristics such as cognitive traits. Fur-

hermore, hybrid algorithms may be investigated which could over-

ome to weaknesses of mono-CI algorithms. 
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