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a b s t r a c t

Learning style is one of the individual differences which play an important role in learning. Being
aware of it helps the student to understand their strengths and weaknesses, and the teacher
to provide more valuable personalized interventions. Furthermore, learning style-based adaptive
educational systems can be designed, which have been shown to increase student satisfaction or
learning gain, while reducing the time needed to learn. It is therefore important to have an accurate
method for identifying students’ learning styles. Since the traditional approach of filling in dedicated
psychological questionnaires has several disadvantages, automatic methods have been proposed,
based on investigating student observable behavior in a learning environment. Research done so
far generally takes a mono-algorithmic approach to identify learning styles, and the precision rates
leave room for improvement. Hence, in this paper we propose a novel hybrid multi-step architecture
based on ant colony system and artificial neural networks to increase the precision of learning
styles identification. Two different variants are proposed and evaluated with data from 75 students;
results show high precision values, outperforming existing automatic approaches for learning style
identification. The proposed architecture can be integrated into widely used educational systems (e.g.,
learning management systems) to provide learners and/or teachers with information about students’
learning styles. In addition, it can be integrated into adaptive educational systems and plugins of
learning management systems to automatically identify learning styles and personalize instruction
respectively.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Learning styles describe students’ individual preferences to-
ards learning; according to various definitions, they refer to

‘different strengths and preferences in the ways they [learners]
ake in and process information’’ [1], ‘‘a description of the atti-
udes and behaviors which determine an individual’s preferred
ay of learning’’ [2] and ‘‘the composite of characteristic cogni-
ive, affective, and physiological factors that serve as relatively
table indicators of how a learner perceives, interacts with, and
esponds to the learning environment’’ [3].

Identifying and understanding a student’s learning style may
ave a positive impact on learning. On one hand, this could in-
rease students’ self-awareness [1,4], allowing them to capitalize
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568-4946/© 2022 Elsevier B.V. All rights reserved.
on their strengths and minimize the effect of their weaknesses
through self-regulation and perceived quality of experience in
blended learning environments may also be influenced by learn-
ing style [5] On the other hand, teachers may use knowledge of
their students’ learning styles to provide alternative activities to
reach broad sections of the class whose needs are not met by
the standard curriculum [6–8]. In addition, adaptive educational
systems can offer a personalized learning experience based on
students’ individual learning style [9–15], as surveyed in several
reviews [16–18]. This adaptation can bring various benefits, such
as an increase in student satisfaction and engagement [11,13,19],
a higher learning gain [10,13,20] or a decrease in the time needed
to learn [12,21,22].

Despite the popularity and appeal of learning styles, some
criticism has also been raised in the literature [23,24]. Firstly,
Coffield et al. [23] argue that in some cases claims made by
researchers without the support of empirical data are used to
provide advice to practitioners. In order to eliminate this problem,
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n the current research we take a data-driven approach to learner
odeling. In addition, we focus our literature review on studies
hich use real student data for evaluation.
Secondly, some of the criticism is related to the burden which

ould be placed on teachers in face-to-face education, in case
hey would have to routinely change their teaching style for each
earner [23]. This issue is alleviated with the use of adaptive
earning systems, which are capable of automatically adapting to
ny number of students [16,17]. Personalization approaches are
ncreasingly being used in learning management systems (LMS)
s well, being viewed as a desirable feature by both faculty and
tudents for many years [25].
Further criticism is addressed at the measuring instruments

i.e., questionnaires) of the learning style models, which some-
imes suffer from psychometric flaws [24]. Hence, in this paper
e propose an implicit learner modeling method based on stu-
ents’ behavioral patterns, which overcomes the weaknesses of
he dedicated learning style questionnaires.

Out of the large number of learning style models which have
een proposed in the literature, in the current research we se-
ected the popular Felder-Silverman learning style model (FSLSM)
8]. This model was found well-suited for use in adaptive educ-
tional systems [26] and correspondingly employed for providi-
g personalized courses in many research studies (as summarized
y [16,17]). FSLSM consists of four dimensions: active/reflective
A/R), sensing/intuitive (S/I), visual/verbal (V/V) and sequential/
lobal (S/G). The A/R dimension describes the preference for pro-
essing information: through learning by doing, experimentation
nd collaboration (in case of active students) vs. thinking and
bsorbing the information alone or in small groups (in case of
eflective students). The S/I dimension describes the preference
or gathering or perceiving information: by the use of senses and
nteracting with the real world (in case of sensing students) vs.
he use of speculation or imagination (in case of intuitive stu-
ents). The V/V dimension describes the preference for inputting
r receiving information: by means of graphs, charts or videos (in
ase of visual students) vs. written or spoken words (in case of
erbal students). The S/G dimension describes the preference for
nformation organization and understanding: in a linear (serial)
ashion, by making small steps through the learning material (in
ase of sequential students) vs. the requirement to see the ‘‘big
icture’’ first, and making larger leaps from non-understanding
o understanding (in case of global students) [8].

The model assumes that each learner has a preference on
ach of the four dimensions, which means their learning style
an be described in a detailed and accurate manner. In addition,
SLSM treats each dimension as a tendency instead of an abso-
ute type, by contrast to many other learning style models, thus
roviding a more nuanced view. This is done by representing
he preference strength on a scale from +11 to −11, for each
imension. Another advantage of FSLSM is the existence of a valid
nd reliable measuring instrument [1], called Index of Learning
tyles Questionnaire (ILS) [27].
However, using questionnaires for identifying learning styles

as several drawbacks: (i) it requires an additional amount of
ork for the students; (ii) it may be difficult to motivate stu-
ents to fill them in carefully, without skipping questions or
iving random or wrong answers on purpose; (iii) it can only
e applied once, so the student model cannot be subsequently
pdated; (iv) results can be influenced by learners’ mood or per-
eived importance of the questionnaire [28]. To overcome these
rawbacks, automatic approaches have been proposed in order
o identify students’ learning styles based on their behavioral
atterns (as summarized in Afini Normadhi et al. [29] and Feld-
an et al. [30]). While some methods based on computational

ntelligence (CI) algorithms provide good results [31], there is still
oom for improvement.
2

Research done so far generally takes a mono-algorithmic ap-
roach to identify learning styles [31–36]. In this paper, we intro-
uce a novel hybrid architecture to further improve the precision
f identification of learning styles according to FSLSM from stu-
ent behavior while interacting in a LMS. The proposed hybrid
rchitecture combines two leading learning style identification
pproaches introduced in [31], using ant colony systems (LSID-
CS) and artificial neural networks (LSID-ANN). More specifi-
ally, the proposed hybrid multi-step architecture uses a complex
hree-step process to combine ant colony system and artificial
eural networks, feeding the results from each step forward
o the next algorithm. In this fashion, each step has additional
nformation from which to refine the model of the relationship
etween behavior patterns and learning styles. This approach
s called ‘‘Learning Style Identifier – Simplify and Solve’’ (LSID-
ISO) since the initial steps simplify the problem by dividing
tudents into more easily classified subgroups, as the subgroups
ave different characteristics on which a model can be based,
nd then solve the given problem in the final step. Two different
ariants of this approach are investigated and we show that they
utperform the existing approaches to identifying learning styles.
The remainder of this paper is structured as follows. Section 2

iscusses related work on automatic learning style identification.
ection 3 provides an overview of hybrid architectures and the
lgorithms used in LSID-SISO. Section 4 describes the hybrid
rchitecture proposed for identifying learning styles. Section 5
resents the methodology used to evaluate LSID-SISO, together
ith a discussion of the results. Section 6 concludes the paper
nd outlines future research directions.

. Related work

The traditional method for identifying learning styles is to
ave students fill in a dedicated psychological questionnaire (ex-
licit method). In order to alleviate the various problems entailed
y the use of these questionnaires (e.g., static model, additional
ime and effort required from the students, undesirable impact
f students’ mood and motivation on the results), alternative
mplicit methods have been proposed. These are based on the
nalysis and interpretation of student observable behavior while
nteracting with an educational system. Two main approaches
ave been identified: data-driven (i.e., applying data mining and
rtificial/computational intelligence algorithms on behavior pat-
erns) and literature-based (i.e., building rules from reviewing
iterature or from expert knowledge) [9]. Since the method pro-
osed in this paper falls in the first category, in what follows
e provide an overview of existing data-driven approaches for

earning style identification according to FSLSM.
Several such automatic approaches have been proposed in

he literature. Some of them were evaluated with artificial (sim-
lated) datasets only; examples include: Villaverde et al. [35],
ho used Artificial Neural Networks, Yannibelli et al. [36], who
sed a Genetic Algorithm and Dorca et al. [32], who used a
einforcement Learning method. While those approaches show
reat promise and demonstrate that the identification of learning
tyles from user behavior is possible, an evaluation with actual
sers is needed to show their accurateness in identifying learning
tyles.
When looking at identification approaches for the FSLSM

loser, there are approaches that simplify the identification pro-
ess by considering only a limited number of classes per FSLSM
imension (e.g., only two classes such as active and reflective)
nstead of identifying learning styles on the whole range of the
imension. For example, Crockett et al. [37] proposed a Conver-
ational Intelligent Tutoring System (CITS), called OSCAR, which
dentifies the learning style of the students by using natural lan-
uage dialogue during tutoring. A method based on fuzzy decision
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rees was used to build a series of fuzzy learning style predictive
odels, starting from behavior variables collected from CITS.
he approach was applied on 75 undergraduate students who
ollowed an SQL tutorial using OSCAR-CITS; 41 behavior variables
ere included in the learner dataset. A set of four fuzzy decision
rees were built, one for each FSLSM dimension, considering only
wo classes per dimension. Another approach which considers
nly two classes per FSLSM dimension was proposed by Gomede
t al. [34]; a deep artificial neural metwork method was used to
dentify the learning styles of students based on their behavior in
MOOC (massive open online course) environment.
A few approaches consider the whole range of the FSLSM

imensions and therefore support the strength of this model to
escribe learning styles in a comprehensive way. For example,
arcia et al. [33] investigated the use of a Bayesian Network
BN) to identify learning styles. As a first step, they extracted
ome student behaviors that are expected to be relevant for
earning style identification (e.g., participation to forum and chat,
reference towards concrete or abstract reading material, access
o examples and exercises, answer changes, exam delivery time
nd results etc.). The initial probabilities were set using expert
nowledge, then the BN was trained with data from 50 students
nd then evaluated with data from 27 students. The precision
ates obtained were: 58% for A/R dimension, 77% for S/I dimen-
ion and 63% for S/G dimension; the V/V dimension was not taken
nto account.

Another example was proposed by Özpolat and Akar [38] who
sed an NBTree classification algorithm in conjunction with a
inary Relevance classifier to identify students’ learning styles
ased on their preferred learning objects (LO). More specifically,
tudents were classified based on the selected LOs and their
ssociated keywords; for example, if the student selects LOs with
eywords such as ‘‘practically’’, ‘‘real world applications’’, ‘‘exper-
mental data results’’, then the student is more likely to be classi-
ied with a sensing learning style. The NBTree was trained using
ata from 10 students and then evaluated using data from 30
tudents. The following precision values were reported: 70.0% for
/R dimension, 73.3% for S/I dimension, 73.3% for S/G dimension
nd 53.3% for V/V dimension.
The currently leading approach with the most accurate results

as proposed by Bernard et al. [31], who applied four compu-
ational intelligence algorithms, artificial neural network (ANN),
enetic algorithm (GA), ant colony system (ACS) and particle
warm optimization (PSO), to increase the precision of auto-
atic learning style identification. They started from an exist-

ng literature-based approach called DeLeS (‘‘Detecting Learning
tyles’’) [39], and aimed to improve it by two methods. The first
as through classification, by using ANN with the behavior pat-
erns from DeLeS as inputs. The second was through optimizing
he weights of each behavior pattern from DeLeS (by using GA,
CS and PSO). Each algorithm was evaluated with data from
5 students and the following precision values were obtained:
i) 80.2% for A/R, 74.1% for S/I, 72.7% for V/V and 82.5% for S/G
hen using ANN; (ii) 78.1% for A/R, 78.1% for S/I, 75.5% for V/V
nd 81.8% for S/G when using GA; (iii) 80.4% for A/R, 76.2% for
/I, 77.1% for V/V and 78.5% for S/G when using ACS; (iv) 80.1%
or A/R, 75.5% for S/I, 75.6% for V/V and 81.0% for S/G when using
SO.
As can be seen, the number of data-driven approaches for

earning style identification according to FSLSM is quite limited.
urthermore, they all rely on mono-algorithmic methods and the
eported precision rates leave room for improvement. In order
o address these challenges, we introduce an innovative hybrid
pproach, as described in the following sections.
3

3. Background on algorithms

This research proposes to combine multiple artificial intelli-
gence algorithms in a novel hybrid architecture to improve the
precision of learning style identification. A literature review was
conducted in order to select the candidate algorithms for hy-
bridization, as described in the previous section. Research showed
that the best accuracy results were obtained by using ANN and
ACS algorithms [31]; hence, these two were selected for inclusion
in the hybrid architectures that we propose. In what follows, a
description of the two individual algorithms (ANN and ACS) is
provided, together with a brief overview on hybrid architectures.

3.1. Artificial neural network

ANNs draw inspiration from neurobiology [40] and are based
on interconnected groups of nodes called neurons. Feedforward
is the most common topology for an ANN, in which the infor-
mation flow is unidirectional. Neurons are organized in layers,
with multi-layer perceptron being a common configuration; this
consists of three layers: input, hidden and output. Each neuron
in each layer has a weighted connection from each neuron in the
preceding layer, while each input neuron has a single connection
to an input variable. A sigmoid function (e.g., tanh) is used to
alculate the strength (output) of the neuron, based on the sum of
ach input multiplied by the corresponding weight of the neural
ink. A feedforward 3-layer perceptron is used in this research.

Both supervised and unsupervised learning strategies can be
mployed with ANNs. In our case, a supervised learning strategy
s used, as the actual learning style of the students in the training
et is known. The training technique applied is back propaga-
ion, i.e., the ANN is traversed in reverse along each neural link,
djusting the weights and thresholds by calculating a weight
odification (∆W ) as a sigmoid function of the error between the
utput and actual values. A learning rate (η < 0) is included to
eep the ANN from oscillating over the optimum and a momen-
um (m ≤ 0) can be added to help escape local optima. Training
an be done either in individual or ensemble mode; in the first
ase, the weight modifications are applied after each sample is
un, while in the latter case these modifications are summed
nd applied at the end of the generation. The back propagation
lgorithm runs until a particular termination condition is reached.

.2. Ant colony system

ACS is an optimization algorithm inspired by the behavior of
eal ants while foraging for food [41]. When an ant discovers a
ood source, it lays a trail of pheromone to it, which other ants
an detect and follow; an indirect communication between ants
hus takes place.

To use ACS, the solution space must be described as a graph;
ach node represents a part of a solution to the problem and the
hole path through the graph represents a solution. A colony
population) of P artificial ants is created, with each ant placed
t a starting node (which could be a fixed node or a randomly
elected one, depending on the problem). The ants then traverse
he graph, by iteratively choosing a link to follow through a
seudorandom proportional rule. Thus, a random value from 0
o 1 is selected and if this value is less than the exploitation
arameter (0 ≤ q0 ≤ 1) then the link with the highest quality
Q ) is selected; Q is a function of the local quality (l) and amount
f pheromones (τ ) on the link, weighted by two parameters (α ≥
and β ≥ 0), as shown in Formula (1). Otherwise, roulette
heel technique is used to select the link, where the selection
robability is equal to the quality of the link divided by the total
uality of all links from that node, as shown in Formula (2).
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candidate list of nodes may be used (i.e., a pre-generated static
ist of preferred choices from each node); a tabu list can also be
mployed, so that an ant does not return to a previously visited
ode. When an ant has no more nodes to move to, this means the
olution is either complete or invalid, depending on the problem.
The algorithm also aims to encourage exploration, by decreas-

ng the amount of pheromone when an ant traverses a link. A
ortion (0 ≤ τ0 ≤ 1) of the pheromone is consumed, as shown
n Formula (3); hence, subsequent ants are less likely to take the
ame path. In addition, once all ants have completed traversing
he graph, another portion of pheromone (0 ≤ ρ ≤ 1) from each
ink is evaporated, according to Formula (4), further encouraging
xploration. Conversely, the global best path or the iteration best
ath has pheromones laid on each link of the path as a function
f the fitness of the solution. The algorithm runs with a new
eneration of ants, until a termination condition is fulfilled.

= lα × τ β (1)

Sn =
Q (ln, τn)∑n
x=1 Q (lx, τx)

(2)

τ = (1− τ0) × τ ′ (3)

τ = (1− ρ) × τ ′ (4)

3.3. Hybrid architectures

A hybrid artificial intelligence algorithm is a technique for
combining multiple individual algorithms together, so as to cap-
italize on the strengths of each [42,43]. Typically, this can be
done in one of three ways. The first technique consists in two
algorithms jointly processing data, where one is intended to
provide a globally oriented search and the other a locally oriented
search [44,45]. A second approach implies that one algorithm
provides a configuration for the second algorithm, as in case
of evolving artificial neural networks [46]. The third technique
consists of two or more algorithms where information from one
algorithm is sent to the other(s) in the ensemble to improve their
processing [43,47].

Hybrid architectures can be either tightly or loosely coupled.
A tightly coupled hybrid architecture allows information to flow
both forward and backward (i.e., cyclically) between the individ-
ual algorithms; an external controller dictates the order in which
the algorithms are trained and executed. By contrast, a loosely
coupled hybrid architecture allows information to be passed for-
ward only; no external controller is required, as the algorithms
are trained and executed sequentially.

For the current research, a loosely coupled hybrid architecture
is used, which is described in more detail in the following section.

4. Simplify and solve

This section introduces two novel LSID-SISO algorithms, each a
hybrid architecture that arranges mono-CI algorithms to identify
students’ learning styles from their behavior patterns in an edu-
cational system. The development of these algorithms is based on
two existing works from literature [31,39]. As such, the first three
subsections provide a brief overview of these two works, starting
with identifying learning styles from behavior patterns [39], and
then enhancing the resulting model using an ACS and ANN for in-
creased accuracy [31]. Section 4.4 describes how the new hybrid
architecture combines these techniques in a novel way to provide
even further improvements to accuracy.
4

4.1. Identifying learning styles from behavior patterns

To identify learning styles from behaviors, the first step was to
produce a set of behavior patterns as the features for the model.
Graf et al. [39] identified behavior patterns from the educational
psychology literature that were known (or at least suspected)
to be related to each of the four FSLSM dimensions and used
those patterns to create the learning style identification system
DeLeS. The selected behavior patterns are generic and trackable
by most learning management systems in order to ensure DeLeS
is practical. For this research, the same behavior patterns (shown
in Table 1) are selected since DeLeS produced results with high
accuracy [39]. Also, LSID-SISO inherits the generic and practical
nature of DeLeS.

Broadly, the behavior patterns can be classified as: (1) nav-
igational, (2) grade-based, or (3) unique. Navigational behavior
patterns track either the average amount of time a student stays
on a particular type of learning object or the percentage of learn-
ing objects they visit of each type. For example, ‘‘example_stay’’
indicates how long on average a student stays on learning objects
classified as examples, and ‘‘example_visit’’ expresses the per-
centage of examples the student visited out of the total number
of examples. As can be seen in Table 1, there are navigation
behavior patterns for content, examples, exercises, forums, the
outline, self assessments, and quiz results (average time only).
Additionally, the percentage of learning objects (of any type)
skipped is tracked.

The second classification of behaviors are the student’s grades
on particular questions of quizzes. Patterns consider questions
focused on concepts, details, developing new solutions and in-
terpretation of existing solutions. In addition, questions may be
about overviews, facts, knowledge presented in text or knowl-
edge presented as graphics.

There are also three unique behaviors: (1) how often the
student posted to forums per week, (2) how often the student
revised quiz answers before submitting, and (3) how often the
student answers the same question twice wrong.

To calculate learning styles from those behavior patterns,
DeLeS uses two thresholds per behavior pattern to classify a
student’s behavior based on the given pattern as either strong
indicative for one learning style on the given dimension, strong
indicative for the other learning style on the given dimension
or average (and therefore does not provide a particular hint).
In addition, no information can be available for a given pattern.
To indicate the relationship between a behavior pattern and a
learning style the symbols ‘‘+’’ and ‘‘-’’ are used in Table 1. For
each behavior pattern a ‘‘+’’ symbol in Table 1 shows that a high
occurrence of the given behavior indicates a preference for the
active, sensing, visual, and sequential learning styles. Inversely, a
‘‘-’’ symbol shows that a high occurrence of the given behavior
indicates a preference for the reflective, intuitive, verbal and
global learning styles. Computationally, a preference is encoded
as a hint value h of 3 (strong preference for active, sensing, visual
or sequential learning style), 2 (neutral preference), 1 (strong
preference for reflective, intuitive, verbal or global learning style),
and the learning style dimension LSdim is computed as the average
of the hint values (as per formula (5)).

LSdim =
∑pdim

i=1 hdim,i

pdim
, (5)

where dim represents one of the four learning style dimensions
and p represents the number of patterns for which information is
available.
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Table 1
Relevant behavior patterns for each FSLSM dimension [39].
Active/ Sensing/ Visual/ Sequential/
Reflective Intuitive Verbal Global

content_stay (−) content_stay (−) content_visit (−) outline_stay (−)
content_visit (−) content_visit (−) forum_post (−) outline_visit (−)
example_stay (−) example_stay (+) forum_stay (−) question_detail (+)
exercise_stay (+) example_visit (+) forum_visit (−) question_develop (−)
exercise_visit (+) exercise_visit (+) question_graphics (+) question_interpret (−)
forum_post (+) question_concepts (−) question_text (−) question_overview (−)
forum_visit (−) question_details (+) navigation_overview_stay (−)
outline_stay (−) question_develop (−) navigation_overview_visit (−)
quiz_stay_results (−) question_facts (+) navigation_skip (−)
self_assess_stay (−) quiz_revisions (+)
self_assess_twice_wrong (+) quiz_results_stay (+)
self_assess_visit (+) self_assess_stay (+)

self_assess_visit (+)
2
1

4.2. Identifying learning styles with ACS

The identification approach in DeLeS [39] is based on the
ssumption that all behavior patterns relevant to a learning style
imension are equally important. While this produces a model
ith reasonable accuracy (as shown in Section 5.5), it can be
xpected that some behaviors are more or less important than
thers. However, it is not clear from the educational psychology
iterature what the relative importance might be for any of the
ehavior patterns. As such, finding those weights was seen as
n optimization problem. It was reasoned that accuracy could be
mproved by weighting the hint values from each pattern and
alculating the average of the weighted hint values.
To extend the identification approach of DeLeS, a set of N

weights must be found for each learning style dimension, where
N is the number of relevant behavior patterns for that dimension.
To use ACS to find a set of N weights, a graph was constructed
for the ants to traverse. This graph was formed such that an ant’s
path can be decoded into a set of N weights. The design of the
graph for LSID-ACS consisted of an N-layered graph with each
layer having 100 nodes, with the number of layers varying for
each of the FSLSM dimensions, and accordingly a separate LSID-
ACS was built for each dimension. The values of the nodes ranged
from 0.01 to 1.00 in increments of 0.01, representing the weights.
For the purposes of simplifying processing, a ‘‘Start’’ node was
added before the first layer and an end node was added after the
Nth layer. In each generation, all ants begin in the ‘‘Start’’ node
and indicate they are finished when they reach the ‘‘End’’ node. As
an example, Fig. 1 shows the graph used for the V/V dimension.
Since this is an acyclic graph, an ant’s path will traverse a single
node per layer, hence selecting N nodes. The N selected nodes, in
turn, decode into a weight for each behavior pattern. In essence
then, from a mathematical point of view a hyperspace is defined
consisting of N dimensions with bounds from 0 to 100.

The goal and as such the aim of the fitness function is to max-
imize the average accuracy (ACC) of the learning style identifica-
tion process. Accuracy is computed using the predicted learning
style values calculated by the algorithm (LSpred) and the actual
learning styles values (LSactual) for a student (i) as follows: ACCS =

1−|LSpred − LSactual|. Since no student is preferred, the overall ACC
is the average across all students. Hence, the fitness function is
computed by Formula (6) for a set of N students (i).

F =
∑N

i=1 ACCi

N
→ max (6)

One of the challenging aspects of using artificial intelligence
algorithms is to determine a termination condition. While an
obvious condition for stopping the algorithm is when all students
are identified perfectly (ACC = 1.0 or error = 0), some other
condition must be used to keep the algorithm from continuing
5

forever if such solution does not exist or cannot be found. As such,
for a stopping condition, the generation in which the best solution
(genbest ) is found and recorded. If an additional genbest generations
have passed without finding a better solution, then the algorithm
stops. In other words, all best solutions are found in the first
half of the number of generations processed. For example, if
genbest = 1000, then the algorithm will terminate after the
000th generation; however, if a new best solution is found at the
500th generation (genbest = 1500), then it will terminate after

the 3000th generation. In addition, to prevent early termination
due to chance, a minimum number of 100 generations need to be
processed. As such, the termination condition for ACS is described
in Formula (7).

T = (errorbest = 0) ∨ ((gennochange > genbest ) ∧ (gencurrent > min)),

(7)

where errorbest is the lowest error found by the algorithm so far,
gennochange is the number of generations since the best solution
(i.e., lowest error) was found, genbest is the generation in which
the best solution (i.e., lowest error) was found, gencurrent is the
current generation of the algorithm, min is set to 100 to represent
the minimum number of generations the algorithm should run.

Algorithm 4.1 shows the pseudocode for identifying learning
styles using only the ACS. To keep the algorithm easy to read,
the inner workings of the ACS are not shown in the pseudocode
since for this algorithm they were unmodified. Instead, the pro-
cess of progressing forward on generation is represented by an
Iterate() function.

One of the features of ACS is to consider pheromone values as
well as local information of a link between two nodes to decide
which node to select next. Local information represents the mea-
surable quality of a link (e.g., distance between two nodes, costs
of selecting a link, etc.). For this problem, no local information is
available since a single weight on its own does not have a specific
measurable quality that would impact the overall solution in a
certain way. Therefore, no local information is used in the ACS
and only the pheromone information is used for link selection.
Dorigo and Stützle [48] consider this a valid use of the ACS. For
the sake of simplicity, the local values on all links are set to 1,
and the two control parameters α and β are both set to 1. In
addition, no candidate lists are used. Candidate lists are optional
in ACS and intended only as a mechanism for incorporating local
information, which does not exist for this problem.

4.3. Identifying learning styles with ANN

ANNs have been described as a ‘‘universal approximator’’ [49],
meaning that they can be used to find complex functions to
describe the relationship between a set of inputs and outputs.
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SID-ANN [31] uses a multilayer perceptron (MLP) topology to
ind the function that best describes the relationship between
learning style dimension and relevant behavior patterns for

hat dimension, based on the identification approach used in De-
eS [39]. While the identification approach in DeLeS assumes that
ach hint from each pattern is equally important, LSID-ANN ex-
ends the approach in DeLeS by finding a function that considers
he individual importance of each hint from each pattern.

A separate LSID-ANN was built for each FSLSM dimension
sing the relevant behavior patterns as the inputs and identified
earning style value as output. Fig. 2 shows the MLP topology used
o identify the V/V dimension as an example.

The fitness function for the LSID-ANN algorithm is the same as
or LSID-ACS (see Formula (6)), where the aim is to maximize the
ccuracy of the identification process (and thereby minimizing
he error).
6

For the ANN, the termination condition is controlled by com-
puting the predicted future error. To do this, a set of samples
(i.e., students) is selected to act as a hypothetical future set to
be classified by the ANN called the validation set. The error in
the validation set can then be thought of as the error that the
algorithm would have in the future. If the future error begins
to rise, and the error in the training set continues to fall, then
the algorithm has likely reached a local optimum and is now
overfitting to the training set, and training can be ceased. The
algorithm would also terminate if both errors were 0. Let errorg
e the error in the current generation of the training set errorg−1
e the error in the previous generation of the training set, errorf
e the predicted future error in the current generation calculated
rom the validation set, and errorf−1 be the predicted future error
n the previous generation calculated from the validation set.
hen the termination condition (T ) can be expressed as shown
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D

Fig. 2. LSID-ANN topography for the V/V dimension [31].
ata: A set of N students each with a list of behavior pattern
data D and actual learning style value LS (see
Section 4.1). A minimum number of generations to
complete min.

Result: A list of weights Wbest .
errorbest ←− ∞ (the best error to date);
W ←− {} (a set of weights);
Wbest ←− {} (the best list of weights so far);
gencurrent ←− 0 (the current generation);
genbest ←− 0 (the generation in which the best result was
found);

gennochange ←− 0 (the number of generations since the best
result was found);

LSpred ←− 0 (the predicted learning style value);

// Let ACS be a standard ant colony system algorithm of A
ants;

// Iterate() processes a generation of the ant colony system
and returns the best weights found in that generation;

repeat
error ←− 0;
W ←− ACS.Iterate();
i←− 0 (an index);
repeat

j←− 0 (an index);
LSpred ←− 0;
repeat

LSpred ←− LSpred + (D[i][j] ·W [j]) (sum the behavior
data multiplied by the weight);

until j > |W |;
LSpred ←− LSpred/|W | (average the weighted behavior
data);

error ←− |LSpred − LS[i]|;
until i > N;
if error < errorbest then

WBest ←− W
end

until errorbest = 0 ∨ (gennochange > genbest ∧ gencurrent > min);
Algorithm 4.1: Algorithm to train an ant colony system to
find a set of weights for behavior patterns to identify learning
styles.
7

in Formula (8):

T = (errorg = 0) ∧ (errorf = 0)

∨ ((errorg < errorg−1) ∧ (genf < errorf−1)). (8)

The pseudocode for training an ANN is similar to that of an
ACS. The code consists of a loop through the training samples
where each one is sent through the ANN (shown as a Process()
function) returning a predicted learning style (LSpred). The error
is computed by comparing the predicted learning style to the
actual learning style (LSactual), and recorded in a list. The list of
errors is then used for the backpropagation process (shown as a
Backpropagation() function). Of course, mathematically, the
space defined by the neural network is vastly more complex
than that produced by the ACS. In the ACS, the relationship
between behaviors and learning styles is a simple weighted sum
of the behavior patterns. With an ANN, the behaviors can in-
teract through the edges connecting the input layer and hidden
layer, and hidden layer to output layer, although prior research
(Bernard et al. 2015 [31]) found the extra complexity did not
decisively produce better results. After the backpropagation step,
the fitness is computed using the fitness function previously
described. However, fitness values, or more accurately, the error
values calculated from the fitness values, are only used for the
termination condition for ANNs, as backpropagation provides the
guidance towards an optimal configuration (ideally global, but
not guaranteed). The algorithm for training the ANN is shown in
Algorithm 4.2.

4.4. Identifying learnings styles with hybrid architecture

Within the context of the previous two subsections, a model
of the relationship between behavior patterns and learning styles
is created by the process of optimizing weights or training an
ANN. In the former case, the model is created using a priori
information gleaned from the literature about behavior patterns
and learning styles and then optimized by weighting the different
relationships. In the latter, the trained ANN itself is the model,
i.e. it takes behavior patterns as inputs and outputs a learning
style. It can be said then that some weighted formula or a trained
ANN is a model M . Furthermore, since both of these algorithms
have been executed then it can be said that there exist multi-
ple models of the relationship between behavior patterns and
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ata: A set (S) of N students each with a list of behavior
pattern data D and actual learning style value LSactual
(see Section 4.1). A set (V )) of M students used as a
validation set. A minimum number of generations to
complete min.

Result: A trained ANN .
errorg ←− ∞ (error in the current generation);
errorg−1 ←− ∞ (error in the previous generation);
errorf ←− 0 (predicted future error);
errorf−1 ←− 0 (predicted future error for the previous
generation);

LSpred ←− 0 (predicted learning style);

// Let ANN be a standard artificial neural network with |D|
inputs;

// Process(s) performs a standard forward propagation, given
a student s as input;

// Backpropagation(e) performs a standard backpropagation
process on ANN taking a list of errors e as input;

repeat
errorg−1 ←− errorg ;
errorf−1 ←− errorf ;
errorg ←− 0;
errorf ←− 0;
n←− 0 (an index);
// compute the error and perform the backpropagation;
foreach s in S do

LSpred ←− ANN.Process(s);
e[n] ←− |LSpred − LSactual[n]|;
errorg ←− errorg + e[n];
n←− n+ 1;

end
ANN.Backpropagation(e);
// compute the future error;
n←− 0;
foreach s in V do

LSpred ←− ANN.Process(s);
e[n] ←− |LSpred − LSactual[n]|;
errorf ←− errorf + e[n];
n←− n+ 1;

end
until (errorg = 0 and errorf = 0) or
((errorg < errorg−1)and(errorf > errorf−1));
lgorithm 4.2: Algorithm to train an artificial neural network
o find an optimal configuration identify learning styles from
set of behavior pattern inputs.

earning styles. For example, let the model produced by the ACS
e, for Active/Reflection as an example, MACS,AR and the model
roduced by the ANN be MANN,AR. While, MACS,AR and MANN,AR

have a different accuracy, they are both valid models for the
relationship.

The core concept in designing the hybrid algorithm is the ob-
servation that, in some optimization problems, given two unique
non-optimal solutions (sol1 and sol2) with the same fitness value,
these two solutions have some components that are optimal or
near optimal while other components are of poorer quality. By
combining the optimal or near-optimal components, a better so-
lution can be found. With respect to learning styles identification,
two unique solutions with equivalent fitness (assuming fitness is
the average accuracy from all learning styles of all students) can
occur when different students have differing accuracy values in
the resulting models (M1 and M2) produced by the solutions. As a
simple example, suppose there is a set of ten students (S ,. . . , S )
1 10

8

Fig. 3. LSID-SISO (ACS) Architecture.

and all but two students (called S1 and S2) have 100% accuracy.
Suppose in M1, S1 has 80% accuracy and S2 has 50% accuracy,
and in M2, S1 has 50% accuracy and S2 has 80% accuracy. The
average accuracy in both solutions is identical, and absent any
reason to prefer S1 or S2 with higher accuracy, then both solutions
must be considered equivalent. However, if it were possible to
combine both models and identify S1 using M1, and S2 using
M2, then overall accuracy would be improved as both students
would have 80% accuracy (and the remaining students in either
M have 100% accuracy). This phenomenon of equivalent solutions
was observed when LSID-ACS [31] and LSID-ANN [31] were being
developed.

The proposed hybrid multi-step architecture combines the
mono-AI algorithms in a complex way to first simplify the prob-
lem and then solve it. This is done by feeding forward the results
from one step to the next. In this fashion, the mono-AI algorithms
described in Sections 4.2 and 4.3 have more information with
which to produce an output. In particular, the goal of the hybrid
architecture is to direct the student behavior data to a model (a
trained ANN) that is most suited to identify their learning style,
since as described above it has been observed that two ANNs
trained separately may identify the same student with different
accuracy, but with the same overall accuracy for all students.
As described above, both such resulting models from the two
executions are valid, albeit conflicting. This indicates that for sub-
groups of students, different behaviors patterns (the evidence) of
their learning styles have different evidentiary value. Hence, the
first consideration in designing the algorithm was to determine a
process for splitting the student data into subgroups that can be
identified most accurately using different behavior patterns. The
first process considered, perhaps as it was the most intuitive, was
to use the output from an LSID approach (e.g., LSID-ACS) to do an
initial classification of the students, with students identified with
a high learning style preference (≥ 0.5) sent to one algorithm and
the rest to another. This resulted in no improvement to overall
accuracy and on reflection this makes sense. In effect, splitting
the dataset this way is roughly equivalent to the original problem:
using a mono-AI algorithm to find a single solution to positively
identify learning styles for an entire data set.

Accordingly, a more complex approach is needed. As such,
the splitting process was improved, and two architectures are
presented in this paper, each consisting of three steps (see Figs. 3
and 4). The two architectures only differ in the first step, where
either an ACS or ANN is used. The first step (‘‘prediction step’’)
produces an initial prediction of a student’s preferred learning
style in a dimension. In this step, either LSID-ANN or LSID-ACS
is used to identify students’ learning styles. Both ACS and ANN
were considered because each was best at identifying two of the
four FSLSM dimensions [31].

The second step is the ‘‘splitting step’’ and is based on the
student’s behavior patterns and initial predicted learning style
preference, both provided as inputs. In this step, an algorithm is
trained to produce a confidence value (a real value C from 0 to 1)
in the correctness of the initial prediction from step 1. In essence,
this algorithm is trained to recognize the occurrence of certain
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Fig. 4. LSID-SISO (ANN) architecture.

eatures in the behavior patterns that result in lower or higher
ccuracy. High confidence for LSID-SISO is defined as C ≥ 0.75.

This setting was determined experimentally by trying values from
0.50 to 0.95 in increments of 0.05.

The final step, called the ‘‘solve step’’, is to make a final predic-
tion of the student’s learning style using two separate algorithms
called HICON and LOWCON that receive students with high confi-
dence and low confidence values respectively. As loosely coupled
hybrid architectures are intended to function by passing informa-
tion forward, both the initial prediction and confidence value are
included as input along with the behavior patterns. Since LSID-
ANN was overall the best algorithm for identifying learning styles
across all four dimensions and it is unclear how the additional
information could be included in the formula used by DeLeS (and
accordingly how it could be included in the weighting schema to
be optimized by algorithms like ACS) both HICON and LOWCON
use ANNs.

LSID-SISO is a multi-step algorithm with each step executed in
sequence, and as such each step requires its own fitness function
and termination condition. For the first step (‘‘prediction step’’),
the same fitness function is used as for LSID-ACS and LSID-
ANN (see Sections 4.2 and 4.3). For the termination condition,
depending on whether an ACS or ANN is used, the termination
condition is identical to either LSID-ACS or LSID-ANN.

In the second step (‘‘confidence step’’) an ANN is always used;
therefore, backpropagation provides the means to guide the al-
gorithm towards increasingly more fit configurations, and ideally
towards an optimal configuration. While the termination condi-
tion is the same as for LSID-ANN, the fitness function is different
to the fitness function used so far since the goal of this algorithm
is different, focusing on the proper classification of a student’s
predicted learning style from the first step with the correct high
confidence and low confidence label (rather than the accuracy
of learning style identification itself). Since the training data
contains the actual learning style values, the correct confidence
classification is computed by comparing the actual learning style
to the predicted learning style. If the difference is less than 0.25,
then the expected output is a high confidence classification; oth-
erwise, a low confidence is expected. The fitness value is simply
the number of correct classifications (C) divided by the number
of samples (N) as shown in Formula (9).

F = C/N (9)

In the third step (‘‘solve step’’), an ANN is again used. As such,
the fitness function and termination condition is identical to the
ones used in LSID-ANN.

The algorithms for training and using the hybrid architecture
are shown in Algorithms 4.3, 4.4, and 4.5. We only show the
training algorithm for LSID-SISO (ACS) since the only difference
to the training algorithm of LSID-SISO (ANN) is that an ANN is
used (instead of an ACS) in the prediction step.

Mathematically, the hybrid architecture adds the variables
initial predicted learning style (LSpred) and confidence (C). It is the
addition of these variables that help refine the predictions made
 i

9

by the mono-AIs. The hybrid architecture feeds this information
forward to help identify the proper subgroup for a student and
identify them more accurately.

Data: A list of behavior pattern data D (see Section 4.1) for a
set of N students. A confidence threshold T .

Result: A trained ACS algorithm (ACSpred), and three trained
ANNs (ANNconf , LOWCON , HICON).

// Assume all algorithms have a function Train(D) that
trains the algorithm in their corresponding standard fashion

// Prediction Step - Initial prediction of learning style value;
// Assume Algorithm 4.1 has a function Predict(s) that
returns a learning style for a student s;

ACSpred.Train(D);
// Let s be the student data for a student in D ;
foreach s in D do

// Add the predicted learning style to the student data for
each student s.Add(ACSpred.Predict(s));

nd

/ Confidence Step - Trains ANNconf to return a confidence
value using the student data including the predicted
learning style. Let Forward(I) be a standard forward
propagation algorithm for an ANN using inputs I that
returns the value of the output node;
/ Based on the previous step, the input array now consists of
the behavior pattern data and the predicted learning style;
NNconf .Train(D);
/ Let s be the student data for a student in D;
// Let Dlow and Dhi be arrays that contain student data
oreach s in D do

// Add the confidence value to the student data for each
student;

C ←− ANNconf .Forward(s);
s.Add(C);
if C ≥ T then

Dhi.Add(s);
end
else

Dlow.Add(s);
end

nd

/ Solve Step - Train the ANNs LOWCON and HICON to output
a learning style based on student input data.;
/ The input arrays Dlow and Dhi now consist of the behavior
pattern data, the predicted learning style, and the
confidence value;
OWCON.Train(Dlow);
ICON.Train(Dhi);
lgorithm 4.3: LSID-SISO (ACS): The algorithm for training
SID-SISO (ACS). Each step is trained in its entirety using the
tudent training data plus the results from the previous step.
ence the ‘‘prediction step’’ uses the student training data.
rom the ‘‘prediction step’’ to the ‘‘confidence step’’, the initial
redicted learning style is added as a feature to the data, while
rom the ‘‘confidence step’’ to the ‘‘solve step’’, the confidence
alues are added. Once trained, the algorithm can be used as
hown in Algorithm 4.4.

. Evaluation

The following section describes the materials and methods
sed to evaluate LSID-SISO. To begin, the data and preprocessing
s discussed, including describing the validity of the data set for
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ata: A list of behavior pattern data D (see Section 4.1) for a
student s. An ACSpred that returns a learning style for a
student s (see Algorithm 4.1). A trained ANN (ANNconf )
that returns a confidence value C using D and a
learning style value as input. Two trained ANNs
(HICON and LOWCON) that return a final learning style
value using D, a predicted learning style value, and a
confidence value as input. A confidence threshold T .

Result: The learning style value (LSfinal) in one of the four
Felder-Silverman dimensions for student s.

// Prediction Step - Initial prediction of learning style value;
// Assume ACSpred has a function Predict(x) that returns a
learning style value given behavior data D for a student s as
input;

inputpred ←− D;
LSpred ←− ACSpred.Predict(inputpred) (the initial predicted
learning style value);

// Confidence Step - Compute confidence value for the
predicted learning style;

// The input array consists of the behavior pattern data and
the predicted learning style;

C ←− 0 (the confidence in the initial prediction);
inputconf ←− D;
inputconf .Add(LSpred);
// Let Forward(I) be a standard forward propagation
algorithm for an ANN using inputs I;

C ←− ANNconf .Forward(inputconf );

/ Solve Step - Compute the final learning style value;
/ The input array consists of the behavior pattern data, the
predicted learning style, and the confidence value;
Sfinal ←− 0 (the final predicted learning style value);
nputsolve ←− D;
nputsolve.Add(LSpred);
nputsolve.Add(C);
f C ≥ T then

LSfinal = HICON.Forward(inputsolve);
nd
lse

LSfinal = LOWCON.Forward(inputsolve);
end
Algorithm 4.4: LSID-SISO (ACS): An algorithm for identifying
the learning style of a student from behavior pattern data us-
ing an ACS and ANNs. This represents LSID-SISO if it were part
of a learning management system. It would receive student
behavior data as input, and using the multistep process, return
a learning style.

evaluating the algorithm. This is followed by a description of
the metrics used to assess LSID-SISO’s ability to identify learning
styles. As the function of the algorithms selected are parameter
dependent, Section 5.3 describes the bounded search techniques
used to optimize the parameters, and then Section 5.4 briefly
describes the techniques used to reduce overfitting. Finally, this
section concludes with a presentation of the results of the evalua-
tion, and a discussion on the results and observations made while
developing LSID-SISO.

5.1. Data

The data set used to evaluate LSID-SISO is the same data
set used for evaluating LSID-ACS [31], LSID-ANN [31] and De-
LeS [39]. The data set consists of both behavior data and the
10
Data: A list of behavior pattern data D (see Section 4.1) for a
student s. A trained ANN, ANNpred, that returns an
initial predicated learning style value using D as input.
A trained ANN, ANNconf , that returns a confidence value
C using D and a learning style value as input. Two
trained ANNs (HICON and LOWCON) that return a final
learning style value using D, a predicted learning style
value, and a confidence value as input. A confidence
threshold T .

Result: The learning style value in one of the four
Felder-Silverman dimensions for student s.

// Prediction Step - Initial prediction of learning style value;
inputpred ←− D;
LSpred = ANNpred.Forward(inputpred) (the initial predicted
learning style value);

// Confidence Step - Compute confidence value for the
predicted learning style;

// Solve Step - Compute the final learning style value;

// Confidence and Solve Steps are identical to Algorithm 4.4;
Algorithm 4.5: LSID-SISO (ANN): An algorithm for identifying
student learning styles from behavior pattern data using ANNs
in a loosely couple hybrid architecture. This represents the
pseudocode for LSID-SISO (ANN) as if it were part of a learning
management system, and hence takes one student’s behavior
data as input and returns a learning style.

student’s actual learning styles (as identified by the ILS ques-
tionnaire [27]) for 127 students from an undergraduate computer
science/information technology course. Preprocessing of the data
was done identically as for DeLeS [39]. To ensure the identified
learning styles are reliable, any student who spent less than 5
minutes filling in the questionnaire was eliminated from the
data set. In addition, to ensure there is sufficient data about
each student, only students who submitted more than half of
the assignments and took the final exam were used. After these
removals, the final dataset consists of 75 students.

The validity of this data set is based on two criteria: size and
distribution of learning styles. With respect to size, our data set
is of similar size to those used in related works. For example,
García et al. [33] used data from 77 students in their data set (50
for training and 27 for testing). Another example is the work by
Özpolat and Akar [38] who used data from 40 students in their
data set (10 for training and 30 for testing).

To ensure that the LSID data set fairly represents learning
styles for students, the distribution of learning styles is examined.
Table 2 shows the percentage of students in the data set with an
active, sensing, visual or sequential learning style (shown in the
‘‘LSID’’ row) and the range of values found in literature [1]. The
distribution of learning styles for the data used by this research
is well within the range of expected values.

A 10-fold cross validation process is used for control parame-
ter optimization, evaluating overfitting reduction and producing
a final result to ensure that LSID-SISO is generalized by exposing
the approaches to different data sets. With the 10-fold cross
validation process, the algorithm is executed 10 times with the
results averaged over the 10 executions each with a different
training and assessment data sets, i.e., a fold, extracted from the
overall data set. For each fold, 1/10th of the students is selected
for the assessment set and chosen such that each student is
selected for only a single fold’s assessment set; thereby, guar-
anteeing that each assessment set is unique. Additionally 1/10th
of the students are selected as a validation set, such that each
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Table 2
Comparison of the distribution of learning styles.

Active Sensing Visual Sequential

LSID 52.7% 63.0% 81.9% 53.4%
Felder and Spurlin [1] 47− 70% 46− 81% 66− 91% 45− 85%
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student is selected for a validation set only once. A student may
not be both in the assessment and validation sets. The remaining
unselected students are used as the training data for the fold.

5.2. Performance metrics

Four performance metrics are used to measure the perfor-
ance of LSID-SISO. Two of the metrics, similarity (SIM) and accu-

acy (ACC), measure the overall performance, while the remaining
wo, lowest ACC (LACC) and percentage matched with reason-
ble accuracy (%Match), measure the performance for individual
tudents.
The first metric, SIM , is a classification metric used commonly

y other approaches [33,39]. SIM works by assuming that learning
tyles are divided into three regions, for example, with the A/R
imension: active, reflective and balanced. Then, the student’s
ctual learning style (LSactual) and identified learning style (LSid)
re compared. As shown in Formula (10), if the values are in the
ame region, the SIM value is 1, if they are in adjacent regions,
.e., one is balanced and the other indicating a preference, the
IM value is 0.5 and finally if they are in opposite regions the
IM value is 0.

IM =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.0 if LS id = LSactual
0.5 if LS id ̸= LSactual

and (LS id = balanced
or LSactual = balanced)

0.0 otherwise

(10)

The SIM metric is suitable for classification algorithms that
dentify learning styles with a label, e.g., strong, neutral or low.
owever, this may cause a misleading result when the LSid or
Sactual are near the thresholds for a label. Consider a student
ith LSactual = 0.76 and LSid = 0.74. This is considered only a
oderate match by SIM , while it is actually a near perfect match.
ince LSID-SISO produces a numeric value to represent a student’s
earning styles preference, the second metric used is accuracy
ACC). ACC is computed as 1 minus the absolute difference be-
ween LSid and LSactual, i.e., the error (shown in Formula (11)).
oth the SIM and ACC metrics are reported as averages over all
tudents across all 10 folds.

CC = 1− |LS id − LSactual| . (11)

Although the preceding metrics are useful for measuring the
verall performance, when using a metric based on an average
t might be that some individual values across the set of results
re low. A poor result for an individual student has the possibility
f a corresponding negative impact on the student as they may
e provided with mismatched material from an adaptive learning
ystem or misleading advice from a teacher. To address this and
dentify any possible deficiency, the results are examined on a
tudent-by-student basis and the LACC and %Match metrics are
omputed. LACC is the lowest ACC value for any student and so
easures the worst-case scenario for any single student (shown

n Formula (12)). %Match measures how many students are iden-
ified reasonably well, thus also implying a percentage identified
oorly. The criterion for considering a match to be reasonably
ood was to have an ACC result greater than half the range of
ctual values in the dataset. Therefore, a reasonable match is
efined as having an ACC result greater than or equal to 0.5 and

ncoded as a value of 1. Inversely, an encoding of 0 is used for an
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nreasonable match (ACC < 0.5). Formula (13) shows how the
Match is computed as the average of the sum of the encoded
alues for each student across all 10 folds.

ACC = min
0<x<n

ACC(LSactual,x, LS id,x) (12)

%Match =

∑n
x=1

{
0.0 ifACC

(
LSactual,x, LS id,x

)
< 0.5

1.0 otherwise
n

(13)

.3. Parameter tuning

The functioning of CI algorithms is dependent on control pa-
ameter settings, and optimal settings are problem dependent.
herefore, an iterative bounded search was used where different
arameter settings are evaluated. The settings that produce the
est results are selected, and then reexecuted to produce a final
esult, which is reported in Section 5.5. The following process was
sed for both ACS and ANN with the only difference being the
pecific parameters optimized.
Although the literature does not define optimal settings, as

hey are problem specific, the literature does provide some guid-
ng principles for setting the control parameters [41,48,50–55].
fter deciding on a suitable range of parameter values, a default
alue (typically mid-range) is selected for each control parameter
shown in bold below). The algorithm is then executed iteratively
ver the set of values for the 1st control parameter, with the
emainder using the default values, and a result is obtained.
he value for the parameter that produces the best result is
onsidered the optimal parameter setting. The iterative process
s then repeated for each parameter, using the already identified
ptimal parameters.
The control parameters for the ANN are optimized in the

ollowing order: number of hidden nodes (H), learning rate (η),
momentum (α) and training mode. An H value between logT [55]
(where T is the size of the training set) and 2× the number of
inputs [54] was selected. In this case, the lower bound is log67
or 1.82 and the upper bound varies by learning styles dimension
since the number of behavior patterns (inputs) varies by learning
styles dimension. As evaluating more values will increase the
chance of finding the optimal parameters, the lower bound is
reduced to 1 instead of rounded up to 2. For learning rate, a low
value is suggested [54] so the values evaluated were between 0.01
and 0.1 in steps of 0.01. Momentum is also recommended to be
low so that it does not cause the ANN to skip past good areas
during training [54]. So, the values evaluated for momentum are
0 to 0.1 in steps of 0.01. Both individual and ensemble training
modes are evaluated for LSID-ANN.

The control parameters for ACS were optimized in the follow-
ing order: population size (P), evaporation ratio (ρ), consumption
ratio (τ0), and exploitation factor (q0). As mentioned above, α and

are both set to 1 since no local information is used. The recom-
ended value for population size ranges from 10 to 100 [50,52,
3]; however, as the graph for learning style identification is quite
bit bigger than those in the literature, it was expanded to give a
et of values (10, 25, 50, 100, 200). The evaporation ratio plays a
significant role in determining the preference towards an explo-
ration vs. exploitation strategy by affecting how long pheromone
persists. A higher evaporation ratio lowers the pheromone persis-
tance and so creates a preference for exploration. The evaporation
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Table 3
Prediction step: Optimal ANN parameter settings for LSID-SISO (ANN).

H η α Training mode

A/R 1 0.08 0.10 Individual
S/I 5 0.06 0.09 Individual
V/V 8 0.08 0.06 Individual
S/G 2 0.07 0.01 Individual

Table 4
Confidence step: Optimal ANN parameter settings for LSID-SISO (ANN).

H η α Training mode

A/R 3 0.07 0.01 Individual
S/I 8 0.05 0.04 Individual
V/V 6 0.06 0.02 Individual
S/G 7 0.03 0.00 Individual

ratio is generally preferred to be somewhat high [41] and so the
set of values selected is (0.5, 0.6, 0.7, 0.8, 0.9). As the consump-
ion ratio also affects the pheromone on links it also influences
he preference towards exploration and exploitation. However,
nlike the evaporation ratio, it is generally preferred to be small
therwise all of the pheromone is quickly consumed by the ants
raversing links [41]. The set of values for the consumption ratio is
0.01, 0.05, 0.10, 0.20, 0.30). The exploitation factor is generally
referred to be high so that the ants will use previously found
ood solutions [41]. While the exploitation parameter is not
xplicitly associated solely with local information, as all local
nformation is set to the same value (i.e., 1), it is possible that
he exploitation parameter could cause some confusion for the
nts. Therefore, q0 = 0.0 was also evaluated giving the set
f values (0.0, 0.5, 0.6, 0.7, 0.8, 0.9). As can be seen in Table 6,
s hypothesized, the exploitation parameter being off was the
ptimal setting.
Tables 3, 4, 5 show the optimal parameter settings for the pre-

iction, confidence and solve steps for LSID-SISO (ANN).
ables 6–8 show the optimal parameter settings for the predic-
ion, confidence and solve steps for LSID-SISO (ACS).

.4. Overfitting reduction strategies

Overfitting is a common problem with machine learning and
omputational intelligence algorithms, where patterns in the data
re memorized into the model such that it fits well during exper-
mentation, but would not actually be a good model in general
40,56,57]. For this research, stratification [56] was used to help
revent overfitting. Weight decay [57] was also used when train-
ng the neural networks as it is reported to reduce overfitting by
referring lower weights on the edges of the network. The opti-
al weight decay for the different ANNs are shown in Tables 9
nd 10.
Stratification [56] can be employed when N-folds are used for

reating training data sets. It works by selecting samples such that

he training and testing sets from producing a fold have a sample

12
istribution similar to the entire data set. In principle, if the entire
ata set is a valid representative of reality, which was tested for
his research (shown in Table 2), then the resulting model is more
ikely to be generalized to reality. For this research, the distri-
ution of learning style preferences for each fold was made to
esemble the distribution found by Felder and Spurlin [1] as close
s possible since picking randomly could result in distributions
hat would not reflect the general population and therefore, could
ffect accuracy when tested with different data sets.
Weight decay functions simply by removing a percentage (0 <

< 1) of the weight from each neural link in an ANN. This was
ound to provide better generalization of ANNs [57]. If the optimal
onfiguration is to have a high weight on a link, then excessive
eight decay will make it difficult to achieve, hence, it is recom-
ended that weight decay be kept low. As such, the values as-
essed for weight decay were (0.00, 0.001, 0.01, 0.02, 0.03, 0.04,
0.05).

5.5. Results and discussion

The following subsection provides the results of the evaluation
for both variants of LSID-SISO. Table 11 shows the SIM results
for both LSIS-SISO variants and several related works which also
provided SIM values. Even though the LSID-SISO variants do not
optimize based on SIM values but based on accuracy values
(ACC), they achieved good results. In examining the SIM values, a
different algorithm is best for each FSLSM dimension. In the V/V
dimension, LSID-SISO (ACS) provides a notable difference having a
SIM value of 0.827 compared to the second-best algorithm (LSID-
ACS) achieving a value of 0.771. In the A/R dimension, LSID-ACS
achieved the best performance with a SIM value of 0.804, closely
followed by the two variants of LSID-SISO and LSID-ANN, all three
achieving a SIM value of 0.802. In the S/G dimension, LSID-ANN
achieved the best result (0.825), with LSID-SISO (ACS) ranking
second with a SIM value of 0.804. In the S/I dimension, DeLeS
achieved the highest result with a SIM value of 0.773 while the
LSID-SISO variants only rank on fourth and fifth position with SIM
values of 0.761 and 0.755.

Table 12 shows the ACC , LACC and %Match results for DeLeS,
LSID-ANN, LSID-ACS and LSID-SISO for each FSLSM dimension.
For those approaches, the respective performance metrics were
available and according to the SIM results presented in Table 11
those approaches are also the most relevant works to compare
the new hybrid architecture with. Comparing the results for LSID-
SISO (ACS) against the other approaches shows that LSID-SISO
(ACS) is the top (or tied for top) approach in each FSLSM dimen-
sion for every metric except LACC for the A/R and S/G dimension
where LSID-SISO (ANN) and LSID-ANN respectively achieve best
results.

In particular, LSID-SISO (ACS) improves the %Match metric
to 1.000 for every FSLSM dimension. In a practical sense, in
having %Match at 100% means that no student is identified poorly.
Although the absolute increase for %Match is generally fairly

small, it is very significant for those individual students since
Table 5
Solve step: Optimal ANN parameter settings for LSID-SISO (ANN).

H η α Training mode

A/R HICON 4 0.06 0.01 Individual
LOWCON 3 0.05 0.01 Individual

S/I HICON 5 0.03 0.04 Individual
LOWCON 6 0.03 0.01 Individual

V/V HICON 3 0.03 0.03 Individual
LOWCON 3 0.06 0.02 Individual

S/G HICON 7 0.02 0.01 Individual
LOWCON 9 0.04 0.01 Individual
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Table 6
Prediction step: Optimal ACS parameter settings for LSID-SISO (ACS).

P ρ τ0 q0
A/R 100 0.80 0.20 0.0
S/I 200 0.80 0.20 0.0
V/V 50 0.90 0.05 0.0
S/G 200 0.50 0.20 0.0

Table 7
Confidence step: Optimal ANN parameter settings for LSID-SISO (ACS).

H η α Training mode

A/R 2 0.08 0.01 Individual
S/I 8 0.03 0.01 Individual
V/V 3 0.02 0.05 Individual
S/G 9 0.01 0.02 Individual

having poor advice can have a serious negative impact on their
education.

Improvements in the LACC metric mean even for the student
ith the worst identification, any advice will be closer to their
rue preference. For this metric LSID-SISO (ACS) achieved the
ighest result for two dimensions (S/I and V/V), while LSID-
ISO (ANN) performed best for the A/R dimension and LSID-ANN
erformed best for the S/G dimension. The improvements in the
CC metric mean that, in general, guidance will be more precise
o the students’ true learning style preferences. Although the
mprovements are small, every bit helps individual students learn
he best they can.

In examining the results for LSID-SISO (ANN), they are quite
ixed and overall, not as good as LSID-SISO (ACS). Only for
ACC in the A/R and S/G dimensions is LSID-SISO (ANN) better
han LSID-SISO (ACS) (with the best result in the A/R dimension
nd the second-best result in the S/G dimension). The likely
xplanation for this is that the LSID-SISO (ANN) architecture is
imilar to having a 9-layer ANN and adding additional layers as
hybrid architecture does not increase the ability of the algo-

ithm to describe the relationship between the behavior patterns
nd FSLSM dimensions as much as adding an entirely different
lgorithm such as ACS. It is possible that adding additional layers
n a different fashion, for example, a deep learning neural net-
ork [58], could provide different results and this would be an
rea for future investigation.
Having compared the algorithms overall, the next few para-

raphs describe how the improvements were obtained for the
/I, V/V and S/G dimensions by looking at the results from the
erspective of individual students. No discussion is made on the
/R dimensions as the ACC and %Match results were identical to
SID-ACS and no telling observations were made in the analysis
f the LACC results. The remainder of this section focuses on

LSID-SISO (ACS) as it has better overall results than LSID-SISO
(ANN).

The analysis of the individual results in the S/I dimension
howed a general improvement in ACC for all students. No stu-
ent was identified worse by LSID-SISO (ACS) than LSID-ACS
13
(which is the best mono-CI approach for the S/I dimension).
By improving the ACC , the LACC and %Match metrics were also
improved.

For the V/V dimension, an analysis of identified values from
LSID-ANN (which is the best mono-CI approach for the V/V di-
mension) shows that students with a learning style value > 0.5
(those with a visual or balanced towards visual preference) are
identified very well and students with a value < 0.5 (those with a
verbal or balanced towards verbal preference) less so. The reason
for this is that about 85% of the students in the data set have a
visual or balanced towards visual preference, hence it is optimal
to identify those students well. Promisingly, the improvement
for LSID-SISO (ACS) is obtained almost entirely by improving
the accuracy in identifying students with a verbal or balanced
towards verbal preference (shown in Table 13) with an increase
in ACC per student ranging from 0.078 to 0.352. However, despite
the improvements, two students are still identified with a visual
preference with learning style values > 0.666 (student #175
and #593) although having a balanced towards verbal prefer-
ence (values between 0.333 and 0.5). In addition, the remaining
four students who have a balanced towards verbal preference
were identified with a balanced towards visual preference (values
between 0.5 and 0.666). Out of the five learners with a verbal
learning style preference (values < 0.333), one was identified
with a balanced towards verbal preference (student #255) while
the other four were identified with a balanced towards visual
preference. To improve the identification of students with a ver-
bal or balanced towards verbal preference further, a modified
fitness function may provide a fairer result by including LACC
or %Match in computing the fitness values. Alternatively, the
students with a visual preference could be weighted to provide
a smaller contribution to the fitness value.

For the S/G dimension, the increase in accuracy compared
to the best mono-CI algorithm is small and split among many
students. In six of the folds a single student had a significant
drop in accuracy, hence the drop in LACC . No correlation to
learning style preference is found as four of the six students have
a sequential preference. However, it was observed that for those
six students the confidence values were not accurate, although no
common feature of the students’ data could be found to explain
the cause for the inaccuracy.

Overall, using confidence to separate the students worked well
at providing an improvement in the performance metrics. But
it is important to see if the algorithm is dividing them in some
meaningful, justifiable way. As a neural network was used, the
resulting model does not have a high degree of interpretability;
therefore, this was examined statistically. Table 14 shows the per-
centage of students who were sent to the proper solver (HICON or
LOWCON), i.e., had their confidence properly identified. A student
is considered to have been sent to the correct solver if: (1) a
student’s ACC value based on the predictor’s identification is <
.75 and this student’s confidence value was identified to be
ow (< 0.75) and therefore the student was sent to LOWCON or
(2) a student’s ACC value based on the predictor’s identification
Table 8
Solve step: Optimal ANN parameter settings for LSID-SISO (ACS).

H η α Training mode

A/R HICON 2 0.08 0.01 Individual
LOWCON 5 0.06 0.02 Individual

S/I HICON 2 0.04 0.03 Individual
LOWCON 7 0.03 0.02 Individual

V/V HICON 3 0.02 0.05 Individual
LOWCON 3 0.03 0.03 Individual

S/G HICON 8 0.01 0.00 Individual
LOWCON 7 0.04 0.03 Individual
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Table 9
Optimal ANN weight decay settings for LSID-SISO (ANN).

Prediction Confidence HICON LOWCON

A/R 0.05 0.02 0.03 0.03
S/I 0.05 0.02 0.01 0.00
V/V 0.01 0.01 0.01 0.01
S/G 0.10 0.03 0.02 0.02

Table 10
Optimal ANN weight decay settings for LSID-SISO (ACS).

Prediction Confidence HICON LOWCON

A/R n/a 0.02 0.05 0.03
S/I n/a 0.01 0.01 0.00
V/V n/a 0.01 0.01 0.01
S/G n/a 0.02 0.01 0.02

is ≥ 0.75 and this student’s confidence value was identified to be
high (≥ 0.75) and therefore, the student was sent to HICON.

As a first attempt for expressing confidence in the accuracy of
a learning style prediction the correctness is subjectively promis-
ing, varying between 72% and 85%. As random guessing should
result in a 50/50 split, there appears to be some (unknown)
reasoning to the ANN used for the confidence step. As the ar-
chitecture overall shows some potential to improve accuracy, it
would be worth investigating this step more closely and look for
alternatives. It might be helpful to use an algorithm that provides
an explainable model (e.g., a decision tree). First, such a model
might help verify the logic used by the algorithm to separate
the data, but it also may reveal some pedagogical understanding
about the differences in the behavior patterns and how they
relate to learning styles.

6. Conclusions

This paper has introduced a new hybrid architecture called
‘‘Learning Style Identifier – Simplify and Solve’’ (LSID-SISO) for

identifying the learning style preferences of students from their o
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behavior patterns when using a learning management system
(LMS). The underlying principle of LSID-SISO is that unique non-
optimal solutions to an optimization problem may have identical
fitness values but may consist of different parts (e.g., a single
student’s identified learning style) where some parts are of higher
quality and some are of lower quality. By combining the parts
that are of higher quality, a better solution can be constructed.
In the context of learning style identification, this means that
if the models from different executions of an algorithm can be
preserved (which is trivial, it is just a configuration), and each
student could be identified by the model which best identified
them, then overall accuracy can be improved. This defines the
problem into two broad steps: splitting the data as optimally as
possible and identifying the learning styles. It is hypothesized that
splitting the data makes training the model a simpler problem as
the data should be more homogeneous, hence the architecture’s
name ‘‘Simplify and Solve’’.

To accomplish this, a loosely coupled multi-step hybrid archi-
tecture was designed where the main feature is the computation
of additional information at each step to feed forward into the
next step of the architecture. For identifying learning styles, the
architecture was broken down into three steps. The first step was
to produce an initial prediction of the learning style preference.
This initial prediction was combined with the behavior data in
the second step to compute a confidence value (C) in the initial
rediction. The data is then split based on the confidence value,
ith C ≥ 0.75 considered high confidence, and the remainder
s low confidence. The third and final step has two identification
lgorithms, one each for high confidence and low confidence data.
Overall, it was found that there was an improvement in ac-

uracy for three of the four FSLSM dimensions compared to the
eading current approaches. In the fourth FSLSM dimension, the
rchitecture produced the same accuracy as the leading mono-
I approach and in addition, there was an improvement in the
orst-case scenario (identified by finding the lowest individual
ccuracy for any student in the data set). Therefore, the concept

f separating data based on a computed confidence value seems
Table 11
Comparison of SIM results (ranks in parenthesis and top result bolded).

Approach SIM

A/R

Bayesian [33] 0.580 (5)
Naïve Bayes Tree [38] 0.700 (4)
DeLeS [39] 0.793 (3)
LSID-ANN [31] 0.802 (2)
LSID-ACS [31] 0.804 (1)
LSID-SISO (ACS) 0.802 (2)
LSID-SISO (ANN) 0.802 (2)

S/I

Bayesian [33] 0.770 (2)
Naïve Bayes Tree [38] 0.733 (7)
DeLeS [39] 0.773 (1)
LSID-ANN [31] 0.741 (6)
LSID-ACS [31] 0.762 (3)
LSID-SISO (ACS) 0.761 (4)
LSID-SISO (ANN) 0.755 (5)

V/V

Bayesian [33] –
Naïve Bayes Tree [38] 0.533 (6)
DeLeS [39] 0.767 (3)
LSID-ANN [31] 0.727 (5)
LSID-ACS [31] 0.771 (2)
LSID-SISO (ACS) 0.827 (1)
LSID-SISO (ANN) 0.739 (4)

S/G

Bayesian [33] 0.630 (6)
Naïve Bayes Tree [38] 0.733 (5)
DeLeS [39] 0.733 (5)
LSID-ANN [31] 0.825 (1)
LSID-ACS [31] 0.785 (3)
LSID-SISO (ACS) 0.804 (2)
LSID-SISO (ANN) 0.780 (4)
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Table 12
Comparison of ACC , LACC , %Match results (ranks in parenthesis and top result bolded).

Approach ACC LACC %Match

A/R

DeLeS 0.799 (4) 0.435 (5) 0.987 (2)
LSID-ANN 0.802 (3) 0.610 (3) 0.986 (3)
LSID-ACS 0.819 (1) 0.599 (4) 1.000 (1)
LSID-SISO (ACS) 0.819 (1) 0.615 (2) 1.000 (1)
LSID-SISO (ANN) 0.813 (2) 0.627 (1) 1.000 (1)

S/I

DeLeS 0.790 (4) 0.389 (5) 0.960 (4)
LSID-ANN 0.790 (4) 0.575 (3) 0.961 (3)
LSID-ACS 0.797 (3) 0.583 (2) 0.971 (2)
LSID-SISO (ACS) 0.814 (1) 0.608 (1) 1.000 (1)
LSID-SISO (ANN) 0.800 (2) 0.573 (4) 0.960 (4)

V/V

DeLeS 0.788 (5) 0.226 (5) 0.987 (2)
LSID-ANN 0.840 (3) 0.656 (2) 0.986 (3)
LSID-ACS 0.799 (4) 0.534 (4) 0.909 (4)
LSID-SISO (ACS) 0.861 (1) 0.673 (1) 1.000 (1)
LSID-SISO (ANN) 0.844 (2) 0.638 (3) 0.986 (3)

S/G

DeLeS 0.702 (5) 0.134 (5) 0.880 (3)
LSID-ANN 0.797 (2) 0.613 (1) 0.986 (2)
LSID-ACS 0.737 (4) 0.426 (4) 0.879 (4)
LSID-SISO (ACS) 0.802 (1) 0.583 (3) 1.000 (1)
LSID-SISO (ANN) 0.796 (3) 0.608 (2) 1.000 (1)
Table 13
ILS, LSID-ANN and LSID-SISO (ACS) identified learning style and ACC for verbal students.
Student ID ILS LSID-ANN ACC LSID-SISO (ACS) ACC ∆ACC

75 0.438 0.726 0.712 0.648 0.790 0.078
175 0.438 0.805 0.633 0.683 0.755 0.122
200 0.438 0.691 0.747 0.583 0.855 0.108
242 0.438 0.837 0.601 0.621 0.817 0.216
295 0.438 0.831 0.607 0.630 0.808 0.201
593 0.438 0.759 0.679 0.675 0.763 0.084
129 0.313 0.693 0.620 0.589 0.724 0.104
177 0.313 0.690 0.623 0.590 0.723 0.100
225 0.313 0.704 0.609 0.515 0.798 0.189
72 0.214 0.756 0.458 0.590 0.624 0.166
255 0.214 0.687 0.527 0.335 0.879 0.352
Table 14
Percentage of students sent to proper solver.

HICON % Correct LOWCON % Correct

A/R 72% 84%
S/I 83% 74%
V/V 85% 73%
S/G 73% 80%

to have potential, and the algorithm did not appear to be guessing
as 72% . . . 85% of all students were split into the correct subset.

By improving the precision of learning styles identification,
tudents benefit in three ways. By knowing their learning styles,
student can better self-regulate their learning and capitalize on
heir strengths. In addition, when they struggle it may help them
nderstand why. Similarly, teachers are provided some insight
nto their struggling students which can aid them in providing
ore appropriate interventions. Lastly, by providing adaptive

earning systems with this information, they can match con-
ent, recommendations and/or interfaces to a student’s preferred
earning styles, which may lead to improved performance [10,13,
0], increased satisfaction with the content/course [11,13,19], and
reduction in the time to learn [12,21,22].
The architecture proposed in this paper can be integrated

nto LMSs like Moodle which are used by millions of learn-
rs. There exist many LMS plugins that consider learning styles.
or example, some plugins provide information about students’
earning styles to learners or teachers [7]. Other examples include
lugins that create adaptive courses that are personalized to a
tudent’s learning style [59,60] or that provide recommenda-
ions to learners, for example, on learning objects within the
15
course [61,62], from a repository [63] or from the web [64].
Most of these plugins use a questionnaire to identify a student’s
learning style, which – as discussed before – has several disad-
vantages from the additional time that students need to spend
to fill out the questionnaire to problems with the accuracy of
their answers. Our proposed approach could extend those plugins
by replacing the questionnaire with an automatic approach for
identifying learning styles, therefore, automatically identifying
the learning styles of students by observing their behaviors. Even
plugins that currently use an automatic approach can benefit
from our algorithm as our algorithm reaches very high accuracy
and therefore can be used to replace less accurate approaches.
More accurate identification of learning styles leads to more
accurate personalization and allows students to optimally benefit
from the personalized support that respective plugins provide.

A limitation of this work is the size of the data set as well
as that the data are collected from students in only one course.
A data set in the size of 75 students, as used in this study, is
common for studies on identifying learning styles and is at the
higher end compared to other related studies. Using students
from only one course is very common as well. In fact, there is not
a single study on identifying learning styles that uses data from
students in different study programs or disciplines. While limited,
such data sets have shown promising results in related works
and also in this work. However, a larger data set, preferably with
students from courses in different study programs and disciplines
would provide results that are more generalizable. Using such a
large data set with LSID-SISO will be one of the directions for
future work, to show, on one hand, the generalizability of LSID-
SISO across disciplines and, on the other hand, to get further
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nsights into the relation between learning styles and student
ehaviors across disciplines.
Several other directions for the future work on learning style

dentification are planned rests in several directions. For exam-
le, LSID-SISO was designed to maximize the ACC results, and
lthough the improvements obtained are important for individual
tudents there is much more room for improvement in the LACC
etric than the ACC metric. Future algorithms can focus on
aximizing both ACC and LACC . A further investigation will be
one into understanding the relationship found by the ANN used
n the confidence step to split the student data, in particular, an
lgorithm that builds an explainable model should be employed
o understand the underlying logic being used. This may include
ooking at alternate methods for training the ANNs in lieu of
ackpropagation.
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