## Syntax Analysis

## Syntax Analysis

- Syntax analysis recognizes the syntactic structure of the programming language and transforms a string of tokens into a tree of tokens
- Parser is the program that performs syntax analysis


## Contents

- Introduction to parser
- Syntax trees
- Context-free grammars
- Push-down automata
- Top-down parsing
- Bottom-up parsing
- Bison - a parser generator


## Introduction to Parser



## Syntax Trees

- A syntax tree represents the syntactic structure of tokens in a program defined by the grammar of the programming language



## Context-Free Grammars (CFG)

- A set of terminals: basic symbols (token types) from which strings are formed
- A set of nonterminals: syntactic categories denoting sets of strings
- A set of productions: rules specifying how the terminals and nonterminals can be combined to form strings
- The start symbol: a distinguished nonterminal denoting the language


## An Example

- Terminals: id, '+', '-', '*', '/', '(', ')'
- Nonterminals: expr, op
- Productions:

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr op expr } \\
& \text { expr } \rightarrow \text { '(' expr ')' } \\
& \text { expr } \rightarrow \text { '-' expr } \\
& \text { expr } \rightarrow \text { id } \\
& \text { op } \rightarrow \text { '+' }\left.\left.\right|^{'-}\right|^{\prime *} \mid ',
\end{aligned}
$$

- Start symbol: expr


## Derivations

- A derivation step is an application of a production as a rewriting rule, namely, replacing a nonterminal in the string by one of its right-hand sides
$\ldots \mathrm{N} \ldots \Rightarrow \ldots \alpha \ldots$
- Starting with the start symbol, a sequence of derivation steps is called a derivation

$$
S \Rightarrow \ldots \Rightarrow \alpha \text { or } S \Rightarrow^{*} \alpha
$$

## An Example

## Grammar:

expr $\rightarrow$ expr op expr expr $\rightarrow$ '(' expr ')' expr $\rightarrow$ '-' expr expr $\rightarrow$ id


Derivation:
$\begin{aligned} & \underline{\text { expr }} \\ \Rightarrow & - \text { expr } \\ \Rightarrow & -(\underline{\text { expr }}) \\ \Rightarrow & -(\text { expr op expr }) \\ \Rightarrow & -(\text { id op expr }) \\ \Rightarrow & -(\mathrm{id}+\underline{\text { expr }}) \\ \Rightarrow & -(\mathrm{id}+\mathrm{id})\end{aligned}$

## Left- \& Right-Most Derivations

- If there are more than one nonterminal in the string, many choices are possible
- A leftmost derivation always chooses the leftmost nonterminal to rewrite
- A rightmost derivation always chooses the rightmost nonterminal to rewrite


## An Example

Leftmost derivation:

$$
\begin{aligned}
& \underline{\text { expr }} \\
\Rightarrow & - \text { expr } \\
\Rightarrow & -(\underline{\text { expr }}) \\
\Rightarrow & -(\underline{\text { expr }} \text { op expr }) \\
\Rightarrow & -(\text { (id op expr }) \\
\Rightarrow & -(\text { id }+ \text { expr }) \\
\Rightarrow & -\left(\text { id }+\frac{\mathrm{id})}{}\right)
\end{aligned}
$$

Rightmost derivation:
expr
$\Rightarrow$ - expr
$\Rightarrow-$ (expr $)$
$\Rightarrow$ - (expr op expr )
$\Rightarrow-($ expr op id)
$\Rightarrow-($ expr $+i d)$
$\Rightarrow-(\mathrm{id}+\mathrm{id})$

## Parse Trees

- A parse tree is a graphical representation for a derivation that filters out the order of choosing nonterminals for rewriting
- Many derivations may correspond to the same parse tree, but every parse tree has associated with it a unique leftmost and a unique rightmost derivation


## An Example

Leftmost derivation:

```
        expr
# - expr
# - (expr)
=> - (expr op expr)
- (id op expr)
- ( id + expr )
- ( id + id )
```

Rightmost derivation:

$$
\begin{aligned}
& \frac{\text { expr }}{} \\
& \Rightarrow-\text { expr } \\
& \Rightarrow-(\text { expr }) \\
& \Rightarrow-(\text { expr op expr }) \\
& \Rightarrow-(\text { expr op id }) \\
& \Rightarrow-(\text { expr }+i d) \\
& \Rightarrow-(\text { id }+i d)
\end{aligned}
$$



## Ambiguous Grammars

- A grammar is ambiguous if it can derive a string with two different parse trees
- If we use the syntactic structure of a parse tree to interpret the meaning of the string, the two parse trees have different meanings
- Since compilers do use parse trees to derive meaning, we would prefer to have unambiguous grammars


## An Example

id + id *id


## Transform Ambiguous Grammars

Ambiguous grammar: expr $\rightarrow$ expr op expr expr $\rightarrow$ '(' expr ')' expr $\rightarrow$ '-' expr expr $\rightarrow$ id $o p \rightarrow{ }^{\prime}+\left.\left.\left.’\right|^{\prime-}{ }^{\prime}\right|^{\prime *}\right|^{\prime} /$ '

Not every ambiguous grammar can be transformed to an unambiguous one!

Unambiguous grammar:
expr $\rightarrow$ expr '+' term
expr $\rightarrow$ expr '-' term
expr $\rightarrow$ term
term $\rightarrow$ term '*' factor term $\rightarrow$ term '/' factor term $\rightarrow$ factor
factor $\rightarrow$ '(' expr ')'
factor $\rightarrow$ '-' expr factor $\rightarrow$ id

## Push-Down Automata

Input


## End-Of-File Marker

- Parsers must read not only terminal symbols but also the end-of-file marker
- We will use $\$$ to represent end of file
- We will also use \$ as the bottom-of-stack maker


## An Example

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b} \\
& S \rightarrow \varepsilon
\end{aligned}
$$



## CFG versus RE

- Every language defined by a RE can also be defined by a CFG
- Why use REs for lexical syntax?
- do not need a notation as powerful as CFGs
- are more concise and easier to understand than CFGs
- More efficient lexical analyzers can be constructed from REs than from CFGs
- Provide a way for modularizing the front end into two manageable-sized components


## Nonregular Languages

- REs can denote only a fixed number of repetitions or an unspecified number of repetitions of one given construct
- A nonregular language: $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b} \\
& S \rightarrow \varepsilon
\end{aligned}
$$

## Top-Down Parsing

- Construct a parse tree from the root to the leaves using leftmost derivation

$$
\begin{aligned}
& S \rightarrow c A B \\
& A \rightarrow a b \\
& A \rightarrow a \\
& B \rightarrow d
\end{aligned}
$$



## Predictive Parsing

- Predictive parsing is a top-down parsing without backtracking
- Namely, according to the next token, there is only one production to choose at each derivation step
$s t m t \rightarrow$ if expr then stmt else stmt while expr do stmt
| begin stmt_list end


## LL(k) Parsing

- Predictive parsing is also called $\operatorname{LL}(\mathrm{k})$ parsing
- The first $L$ stands for scanning the input from left to right
- The second $L$ stands for producing a leftmost derivation
- The k stands for using k lookahead input symbol to choose alternative productions at each derivation step


## LL(1) Parsing

- We will only describe $\operatorname{LL}(1)$ parsing from now on, namely, parsing using only one lookahead input symbol
- Recursive-descent parsing - hand written or tool (e.g. PCCTS and CoCo/R) generated
- Table-driven predictive parsing - tool (e.g. LISA and LLGEN) generated


## Recursive Descent Parsing

- A procedure is associated with each nonterminal of the grammar
- A clause in the procedure is associated with each production of that nonterminal
- A match of a token is associated with each terminal in the right hand side of the production
- A procedure call is associated with each nonterminal in the right hand side of the production


## An Example

## $S \rightarrow$ if $E$ then $S$ else $S$ <br> | begin Lend <br> $\mid$ print $E$ <br> $L \rightarrow S ; L$ <br> | $\varepsilon$ <br> $E \rightarrow$ num $=$ num

## An Example

final int IF $=1$, THEN $=2, \mathrm{ELSE}=3, \operatorname{BEGIN}=4$, END $=5, \mathrm{PRINT}=6, \mathrm{SEMI}=7, \mathrm{NUM}=8$, $E Q=9 ;$
int tok = gettoken();
void advance() \{ tok = gettoken(); \} void match(int t) \{
if (tok == t) advance(); else error(); \}

## An Example

void S() \{
switch (tok) \{
case IF: match(IF); E(); match(THEN); S(); match(ELSE); S(); break; case BEGIN: match(BEGIN); L(); match(END); break; case PRINT: match(PRINT); E(); break; default: error();

## An Example

void L() \{
switch (tok) \{ case END: break; case IF: case BEGIN: case PRINT: $S()$; match(SEMI); L(); break; default: error();
\}
void E() \{ match(NUM); match(EQ); match(NUM); \}

## First and Follow Sets

- The first set of a string $\alpha, \operatorname{FIRST}(\alpha)$, is the set of terminals that can begin the strings derived from $\alpha$. If $\alpha \Rightarrow^{*} \varepsilon$, then $\varepsilon$ is also in $\operatorname{FIRST}(\alpha)$
- The follow set of a nonterminal $X$, Follow $(X)$, is the set of terminals that can immediately follow X


## Computing First Sets

- If $X$ is terminal, then $\operatorname{FIRST}(X)$ is $\{X\}$
- If $X$ is nonterminal and $X \rightarrow \varepsilon$ is a production, then add $\varepsilon$ to FIRST $(X)$
- If $X$ is nonterminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then add a to $\operatorname{FIRST}(X)$ if for some $i$, a is in $\operatorname{FIRST}\left(Y_{i}\right)$ and $\varepsilon$ is in all of $\operatorname{FIRST}\left(Y_{1}\right), \ldots, \operatorname{FIRST}\left(Y_{i-1}\right)$. If $\varepsilon$ is in $\operatorname{FIRST}\left(Y_{j}\right)$ for all $j$, then add $\varepsilon$ to $\operatorname{FIRST}(X)$


## An Example

$S \rightarrow$ if $E$ then $S$ else $S \mid$ begin $L$ end | print $E$
$L \rightarrow S ; L \mid \varepsilon$
$E \rightarrow$ num $=$ num
$\operatorname{FIRST}(S)=\{$ if, begin, print $\}$
FIRST $(L)=\{$ if, begin, print,$\varepsilon\}$
$\operatorname{FIRST}(E)=\{$ num $\}$

## Computing Follow Sets

- Place $\$$ in $\operatorname{FOLLOW}(S)$, where $S$ is the start symbol and $\$$ is the end-of-file marker
- If there is a production $A \rightarrow \alpha B \beta$, then everything in $\operatorname{FIRST}(\beta)$ except for $\varepsilon$ is placed in FOLLOW( $B$ )
- If there is a production $A \rightarrow \alpha B$ or $A \rightarrow \alpha B \beta$ where $\operatorname{FIRST}(\beta)$ contains $\varepsilon$, then everything in $\operatorname{FOLLOW}(A)$ is in FOLLOW $(B)$


## An Example

$S \rightarrow$ if $E$ then $S$ else $S \mid$ begin $L$ end | print $E$ $L \rightarrow S ; L \mid \varepsilon$
$E \rightarrow$ num $=$ num
$\operatorname{FOLLOW}(S)=\{\$$, else, ; $\}$
$\operatorname{FOLLOW}(L)=\{$ end $\}$
FOLLOW $(E)=\{$ then, $\$$, else, ; $\}$

## Table-Driven Predictive Parsing

Input. Grammar G. Output. Parsing Table M. Method.

1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
2. For each terminal $a$ in $\operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, a]$.
3. If $\varepsilon$ is in $\operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M A, b]$ for each terminal $b$ in $\operatorname{FOLLOW}(A)$. If $\varepsilon$ is in $\operatorname{FIRST}(\alpha)$ and $\$$ is in $\operatorname{FOLLOW}(A)$, add $A \rightarrow \alpha$ to $M A, \$]$.
4. Make each undefined entry of $M$ be error.

## An Example

|  | $S$ | $L$ | $E$ |
| :--- | :--- | :--- | :--- |
| if | $S \rightarrow$ if $E$ then $S$ else $S$ | $L \rightarrow S ; L$ |  |
| then |  |  |  |
| else |  | $L \rightarrow S ; L$ |  |
| begin | $S \rightarrow$ begin $L$ end | $L \rightarrow \varepsilon$ |  |
| end |  | $L \rightarrow S ; L$ |  |
| print <br> num | $S \rightarrow$ print $E$ |  | $E \rightarrow$ num = num |
| $;$ |  |  |  |
| $\$$ |  |  |  |

## An Example

| Stack | Input |
| :--- | :--- |
| $\$ S$ | begin print num $=$ num $;$ end $\$$ |
| $\$$ end $L$ begin | begin print num $=$ num $;$ end $\$$ |
| $\$$ end $L$ | print num $=$ num ; end $\$$ |
| $\$$ end $L ; S$ | print num $=$ num ; end $\$$ |
| $\$$ end $L ; E$ print | print num $=$ num ; end $\$$ |
| $\$$ end $L ; E$ | num $=$ num $;$ end $\$$ |
| $\$$ end $L ;$ num $=$ num | num $=$ num ; end $\$$ |
| $\$$ end $L ;$ | ; end $\$$ |
| $\$$ end $L$ | end $\$$ |
| $\$$ end | end $\$$ |
| $\$$ | $\$$ |

## LL(1) Grammars

- A grammar is LL(1) iff its predictive parsing table has no multiply-defined entries
- A grammar $G$ is $L L(1)$ iff whenever $A \rightarrow \alpha \mid \beta$ are two distinct productions of $G$, the following conditions hold:
$\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing$,
If $\varepsilon \in \operatorname{FIRST}(\alpha), \operatorname{FOLLOW}(A) \cap \operatorname{FIRST}(\beta)=\varnothing$,
If $\varepsilon \in \operatorname{FIRST}(\beta), \operatorname{FOLLOW}(A) \cap \operatorname{FIRST}(\alpha)=\varnothing$


## A Counter Example

$$
\begin{aligned}
& S \rightarrow \mathbf{i} \text { EtS S' } \mathbf{a} \\
& S^{\prime} \rightarrow \mathbf{e S} \mid \varepsilon \\
& \mathrm{E} \rightarrow \mathbf{b}
\end{aligned}
$$

|  | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{e}$ | $\mathbf{i}$ | $\mathbf{t}$ |
| :--- | :---: | :---: | :---: | :--- | :---: |
| S | $\mathrm{S} \rightarrow \mathbf{a}$ |  |  | $S \rightarrow \mathbf{i E t S S}$ |  |
| $\mathrm{~S}^{\prime}$ |  | $\mathrm{S}^{\prime} \rightarrow \varepsilon$ <br> $\mathrm{S}^{\prime} \rightarrow \mathbf{e} \mathrm{S}$ |  | $S^{\prime} \rightarrow \varepsilon$ |  |
| E |  | $\mathrm{E} \rightarrow \mathbf{b}$ |  |  |  |

$\varepsilon \in \operatorname{FIRST}(\varepsilon) \wedge \operatorname{FOLLOW}\left(S^{\prime}\right) \cap \operatorname{FIRST}(\mathrm{e} S)=\{e\} \neq \varnothing$

## Left Recursive Grammars

- A grammar is left recursive if it has a nonterminal $A$ such that $A \Rightarrow{ }^{*} A \alpha$
- Left recursive grammars are not LL(1) because

$$
\begin{aligned}
& A \rightarrow A \alpha \\
& A \rightarrow \beta
\end{aligned}
$$

will cause $\operatorname{FIRST}(\mathrm{A} \alpha) \cap \operatorname{FIRST}(\beta) \neq \varnothing$

- We can transform them into $\operatorname{LL}(1)$ by eliminating left recursion


## Eliminating Left Recursion

$$
A \rightarrow A \alpha \left\lvert\, \beta \Rightarrow \begin{aligned}
& \mathrm{A} \rightarrow \beta \mathrm{R} \\
& \mathrm{R} \rightarrow \alpha \mathrm{R} \mid \varepsilon
\end{aligned}\right.
$$



## Direct Left Recursion

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~A} \alpha_{1}\left|\mathrm{~A} \alpha_{2}\right| \ldots\left|\mathrm{A} \alpha_{m}\right| \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{\mathrm{n}} \\
& \sqrt{2} \\
& \mathrm{~A} \rightarrow \beta_{1} \mathrm{~A}^{\prime}\left|\beta_{2} \mathrm{~A}^{\prime}\right| \ldots \mid \beta_{n} \mathrm{~A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \alpha_{1} \mathrm{~A}^{\prime}\left|\alpha_{2} \mathrm{~A}^{\prime}\right| \ldots\left|\alpha_{m} \mathrm{~A}^{\prime}\right| \varepsilon
\end{aligned}
$$

## An Example

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \text { * } \mathrm{F} \mid \mathrm{F} \\
& F \rightarrow(E) \mid \text { id } \\
& \sqrt{2} \\
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\text { T E' } \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{~F} \text { T' | } \varepsilon \\
& F \rightarrow(E) \mid \text { id }
\end{aligned}
$$

## Indirect Left Recursion

$$
\begin{aligned}
& S \rightarrow A a \mid b \\
& A \rightarrow A c|S d| \varepsilon \\
& S \Rightarrow A a \Rightarrow S d a \\
& A \rightarrow A c|A a d| b d \mid \varepsilon \\
& S \rightarrow A a \mid b \\
& A \rightarrow b d A^{\prime} \mid A^{\prime} \\
& A^{\prime} \rightarrow C A^{\prime}\left|a d A^{\prime}\right| \varepsilon
\end{aligned}
$$

## Left factoring

- A grammar is not LL(1) if two productions of a nonterminal A have a nontrivial common prefix. For example, if $\alpha \neq \varepsilon$, and $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$, then $\operatorname{FIRST}\left(\alpha \beta_{1}\right) \cap \operatorname{FIRST}\left(\alpha \beta_{2}\right) \neq \varnothing$
- We can transform them into LL(1) by performing left factoring

$$
\begin{aligned}
& A \rightarrow \alpha A^{\prime} \\
& A^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

## An Example

$$
\begin{aligned}
& S \rightarrow i E t S|i E t S e S| a \\
& \mathrm{E} \rightarrow \mathrm{~b} \\
& \square \\
& S \rightarrow \mathbf{i E t S} S^{\prime} \mid \mathbf{a} \\
& \mathrm{S}^{\prime} \rightarrow \mathbf{e} S \mid \varepsilon \\
& \mathrm{E} \rightarrow \mathrm{~b}
\end{aligned}
$$

## Bottom-Up Parsing

- Construct a parse tree from the leaves to the root using rightmost derivation in reverse

$$
\begin{aligned}
& S \rightarrow a A B e \\
& A \rightarrow A b c / b \\
& B \rightarrow d
\end{aligned}
$$


input: abbcde
$a b b c d e \quad a b b c d e$ abbcde $\Leftarrow$ aAbcde $\Leftarrow a A d e \Leftarrow a A B e \Leftarrow S$

## LR(k) Parsing

- The L stands for scanning the input from left to right
- The R stands for producing a rightmost derivation
- The $k$ stands for using k lookahead input symbol to choose alternative productions at each derivation step


## An Example

1. $S^{\prime} \rightarrow S$
2. $S \rightarrow$ if $E$ then $S$ else $S$
3. $S \rightarrow$ begin $L$ end
4. $S \rightarrow$ print $E$
5. $L \rightarrow S ; L$
6. $L \rightarrow \varepsilon$
7. $E \rightarrow$ num = num

## An Example

| Stack | Input | Action |
| :---: | :---: | :---: |
| \$ | begin print num = num ; end \$ | shift |
| \$ begin | print num = num ; end \$ | shift |
| \$ begin print | num = num ; end \$ | shift |
| \$ begin print num | = num ; end \$ | shift |
| \$ begin print num = | num ; end \$ | shift |
| \$ begin print num = num | ; end \$ | reduce |
| \$ begin print E | ; end \$ | reduce |
| \$ begin S | ; end \$ | shift |
| \$ begin S ; | end \$ | reduce |
| \$ begin S ; L | end \$ | reduce |
| \$ begin L | end \$ | shift |
| \$ begin L end | \$ | reduce |
| \$ S | \$ | accept |

## LL(k) versus LR(k)

- LL(k) parsing must predict which production to use after seeing only the first $k$ tokens of the right-hand side
- $\operatorname{LR}(\mathrm{k})$ parsing is able to postpone the decision until it has seen tokens corresponding to the entire right-hand side and k more tokens beyond
- LR(k) parsing thus can handle more grammars than $\operatorname{LL}(\mathrm{k})$ parsing


## LR Parsers



## LR Parsing Tables



## LR Parsing Tables

|  | if then else begin end print |  | E |
| :---: | :---: | :---: | :---: |
| 11 | s3 _ - - - - - _ s4- - - _ s5 | g15 |  |
| 12 |  |  |  |
| 13 | r3 |  |  |
| 14 | ----------15 | g9 |  |
| 15 | s18 |  |  |
| 16 | r7 _r7 |  |  |
| 17 | r6 |  |  |
| 18 | s33-- | g19 |  |
| 19 | r2 |  |  |

action

## An Example

| Stack | Input | Action |
| :---: | :---: | :---: |
| \$ | begin print num = num ; end \$ | s4 |
| \$1 $\mathrm{begin}_{4}$ | print num = num ; end \$ | s5 |
| \$1 begin ${ }_{4}$ print $_{5}$ | num = num ; end \$ | s7 |
| \$1 ${ }^{\text {begin }}{ }_{4}$ print $_{5}$ num $_{7}$ | = num ; end \$ | s12 |
| $\$_{1}$ begin $_{4}$ print $_{5}$ num $_{7}=12$ | num ; end \$ | s16 |
| $\$_{1}$ begin $_{4}$ print $_{5}$ num $_{7}={ }_{12}$ num $_{16}$ | ; end \$ | r7 |
| $\$_{1}$ begin $_{4}$ print $_{5} \mathrm{E}_{10}$ | ; end \$ | r4 |
| \$1 begin $_{4} \mathrm{~S}_{9}$ | ; end \$ | s14 |
| \$ begin $_{4} \mathrm{~S}_{9} ; 14$ | end \$ | r5 |
| \$1 begin $_{4} \mathrm{~S}_{9} ; 14 \mathrm{~L}_{17}$ | end \$ | r6 |
| \$ ${ }_{\text {begin }} \mathrm{L}_{8}$ | end \$ | s13 |
| \$1 begin $_{4} L_{8}$ end $_{13}$ | \$ | r3 |
| \$1 $S_{2}$ | \$ | a |

## LR Parsing Driver

while (true) \{
$\mathrm{s}=$ top(); a = gettoken();
if (action[s, a] == shift s') \{ push(a); push(s'); \}
else if (action[s, a] == reduce $A \rightarrow \alpha$ ) \{ pop 2 * $|\alpha|$ symbols off the stack; s' = goto[top(), A]; push(A); push(s'); \}
else if (action[s, a] == accept) \{ return; \} else \{ error(); \}

## LR Parsing Table Generation

- An LR parsing table generation algorithm transforms a CFG to an LR parsing table
- SLR(1) parsing table generation
- LR(1) parsing table generation
- LALR(1) parsing table generation


## From CFG to NPDA

- An $L R(0)$ item of a grammar in $G$ is a production of $G$ with a dot at some position of the right-hand side, $\mathrm{A} \rightarrow \alpha \bullet \beta$
- The production $A \rightarrow X Y Z$ yields the following four $L R(0)$ items

$$
\begin{array}{ll}
\mathrm{A} \rightarrow \cdot \mathrm{XYZ}, & \mathrm{~A} \rightarrow \mathrm{X} \cdot \mathrm{Y} Z, \\
\mathrm{~A} \rightarrow \mathrm{XY} \mathrm{Y}, & \mathrm{~A} \rightarrow \mathrm{XYZ}
\end{array}
$$

- An $\operatorname{LR}(0)$ item represents a state in a NPDA indicating how much of a production we have seen at a given point in the parsing process


## An Example

1. $\mathrm{E}^{\prime} \rightarrow \mathrm{E}$
2. $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
3. $\mathrm{E} \rightarrow \mathrm{T}$
4. $\mathrm{T} \rightarrow \mathrm{T}$ * F
5. $\mathrm{T} \rightarrow \mathrm{F}$
6. $F \rightarrow(E)$
7. $F \rightarrow$ id

## An Example



## An Example



## From NPDA to DPDA

- There are two functions performed on sets of LR(0) items (states)
- The function closure(I) adds more items to I when there is a dot to the left of a nonterminal
- The function goto(I, X) moves the dot past the symbol $X$ in all items in I that contain $X$


## The Closure Function

closure(I) =
repeat
for any item $A \rightarrow \alpha \bullet X \beta$ in I for any production $X \rightarrow \gamma$
$I=I \cup\{X \rightarrow \bullet \gamma\}$
until I does not change return I

## An Example

$$
\begin{aligned}
& \text { 1. } \mathrm{E}^{\prime} \rightarrow \mathrm{E} \\
& \text { 2. } \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& \text { 3. } \mathrm{E} \rightarrow \mathrm{~T} \\
& \text { 4. } T \rightarrow T \text { * } F \\
& \text { 5. } \mathrm{T} \rightarrow \mathrm{~F} \\
& \text { 6. } F \rightarrow(E) \\
& \text { 7. } F \rightarrow \text { id } \\
& \mathrm{s}_{1}=\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E} \text {, } \\
& \mathrm{l}_{1}=\operatorname{closure}\left(\left\{\mathrm{s}_{1}\right\}\right)=\{ \\
& \mathrm{E}^{\prime} \rightarrow \bullet \text { E, } \\
& E \rightarrow \bullet E+T \text {, } \\
& \mathrm{E} \rightarrow \bullet \mathrm{~T} \text {, } \\
& \mathrm{T} \rightarrow \bullet \mathrm{~T} \text { * } \mathrm{F} \text {, } \\
& \mathrm{T} \rightarrow \bullet \mathrm{~F} \text {, } \\
& F \rightarrow \bullet(E) \text {, } \\
& \mathrm{F} \rightarrow \bullet \text { id }\}
\end{aligned}
$$

## The Goto Function

goto( $\mathrm{I}, \mathrm{X})=$ set $J$ to the empty set for any item $A \rightarrow \alpha \bullet X \beta$ in I add $A \rightarrow \alpha X \bullet \beta$ to $J$ return closure(J)

## An Example

$$
\left.\begin{array}{rl}
\mathrm{I}_{1}=\left\{\mathrm{E}^{\prime}\right. & \rightarrow \bullet \mathrm{E}, \\
\mathrm{E} & \rightarrow \bullet \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \bullet \mathrm{~T}, \\
\mathrm{~T} & \rightarrow \bullet \mathrm{~T} * \mathrm{~F}, \mathrm{~T} \rightarrow \bullet \mathrm{~F}, \\
& \mathrm{~F}
\end{array} \rightarrow \bullet(\mathrm{E}), \mathrm{F} \rightarrow \bullet \mathrm{id}\right\},
$$

goo( $\mathrm{I}_{1}$, E)
$=$ closure ( $\left\{\mathrm{E}^{\prime} \rightarrow \mathrm{E} \bullet \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}\right\}$ )
$=\left\{\mathrm{E}^{\prime} \rightarrow \mathrm{E} \bullet, \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}\right\}$

## The Subset Construction Function

subset-construction(cfg) = initialize T to $\left\{\right.$ closure $\left.\left(\left\{\mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S}\right\}\right)\right\}$ repeat
for each state I in T and each symbol X let J be goto(I, X)
if J is not empty and not in T then

$$
T=T \cup\{J\}
$$

until T does not change return T

## An Example

$\mathrm{I}_{1}:\left\{\mathrm{E}^{\prime} \rightarrow \bullet \mathrm{E}, \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \bullet \mathrm{T}, \mathrm{T} \rightarrow \bullet \mathrm{T} * \mathrm{~F}\right.$, $\mathrm{T} \rightarrow \bullet \mathrm{F}, \mathrm{F} \rightarrow \bullet(\mathrm{E}), \mathrm{F} \rightarrow \bullet \mathrm{id}\}$
$\operatorname{goto}\left(I_{1}, E\right)=I_{2}:\left\{E^{\prime} \rightarrow E \bullet, E \rightarrow E \bullet+T\right\}$ $\operatorname{goto}\left(\mathrm{I}_{1}, \mathrm{~T}\right)=\mathrm{I}_{3}:\{\mathrm{E} \rightarrow \mathrm{T} \bullet, \mathrm{T} \rightarrow \mathrm{T} \bullet * \mathrm{~F}\}$
$\operatorname{goto}\left(\mathrm{I}_{1}, \mathrm{~F}\right)=\mathrm{I}_{4}:\{\mathrm{T} \rightarrow \mathrm{F} \bullet\}$
goto $\left(\mathrm{I}_{1}, '(')=\mathrm{I}_{5}:\{\mathrm{F} \rightarrow(\bullet \mathrm{E}), \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \bullet \mathrm{T}\right.$ $\mathrm{T} \rightarrow \bullet \mathrm{T} * \mathrm{~F}, \mathrm{~T} \rightarrow \bullet \mathrm{~F}, \mathrm{~F} \rightarrow \bullet(\mathrm{E}), \mathrm{F} \rightarrow \bullet \mathrm{id}\}$
$\operatorname{goto}\left(I_{1}\right.$, id $)=I_{6}:\{F \rightarrow$ id $\bullet\}$
$\operatorname{goto}\left(\mathrm{I}_{2}, ‘+'\right)=\mathrm{I}_{7}:\{\mathrm{E} \rightarrow \mathrm{E}+\bullet \mathrm{T}, \mathrm{T} \rightarrow \bullet \mathrm{T} * \mathrm{~F}, \mathrm{~T} \rightarrow \bullet \mathrm{~F}$ $F \rightarrow \bullet(E), F \rightarrow \bullet i d\}$

## An Example

$\operatorname{goto}\left(I_{3},{ }^{\prime * *}\right)=I_{8}:\left\{T \rightarrow T^{*} \bullet F, F \rightarrow \bullet(E), F \rightarrow \bullet i d\right\}$
$\operatorname{goto}\left(\mathrm{I}_{5}, \mathrm{E}\right)=\mathrm{I}_{9}:\{\mathrm{F} \rightarrow(\mathrm{E} \bullet), \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}\}$
$\operatorname{goto}\left(I_{5}, T\right)=I_{3}$
$\operatorname{goto}\left(I_{5}, F\right)=I_{4}$
goto( $I_{5}$, '(') $=I_{5}$
goto $\left(I_{5}, i d\right)=I_{6}$
$\left.\operatorname{goto}\left(\mathrm{I}_{7}, \mathrm{~T}\right)=\mathrm{I}_{10}: \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \bullet \mathrm{T} \rightarrow \mathrm{T} \bullet * \mathrm{~F}\right\}$
$\operatorname{goto}\left(I_{7}, F\right)=I_{4}$
goto $\left(I_{7}, '(')=I_{5}\right.$
$\operatorname{goto}\left(I_{7}\right.$, id $)=I_{6}$

## An Example

$\operatorname{goto}\left(I_{8}, F\right)=I_{11}:\left\{T \rightarrow T^{*} F \cdot\right\}$
goto( $I_{8}, \quad$ '(') $=I_{5}$
$\operatorname{goto}\left(I_{8}\right.$, id $)=I_{6}$
$\left.\operatorname{goto}\left(\mathrm{I}_{\mathrm{g}},{ }^{\prime}\right)^{\prime}\right)=\mathrm{I}_{12}:\{\mathrm{F} \rightarrow(\mathrm{E}) \bullet\}$
goto( $\left(\mathrm{I}_{9}, '+\right.$ ') $=\mathrm{I}_{7}$
$\operatorname{goto}\left(\mathrm{I}_{10},{ }^{\prime * *}\right)=\mathrm{I}_{8}$

## An Example



## SLR(1) Parsing Table Generation

SLR(cfg) $=$
for each state I in subset-construction(cfg)
if $\mathrm{A} \rightarrow \alpha \cdot \mathrm{a} \beta$ in I and goto( $\mathrm{I}, \mathrm{a})=\mathrm{J}$ for a terminal a then action[l, a] = "shift J"
if $\mathrm{A} \rightarrow \alpha \bullet$ in I and $\mathrm{A} \neq \mathrm{S}^{\prime}$ then
action[l, a] = "reduce A $\rightarrow \alpha$ " for all a in Follow(A)
if $S$ ' $\rightarrow S \bullet$ in I then action[I, \$] = "accept"
if $\mathrm{A} \rightarrow \alpha \bullet \mathrm{X} \beta$ in I and goto(I, X$)=\mathrm{J}$ for a nonterminal X then goto $[I, X]=\mathrm{J}$
all other entries in action and goto are made error

## An Example

|  | + | * | 1 | ) | id | \$ | E | T | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | s 5 |  | s6 |  |  | _ _q | - 94 |
|  | s7 |  |  |  |  | a |  |  |  |
| 3 | r3 | s |  | r3 |  | r3 |  |  |  |
| 4 | r5 | r |  | r |  | r |  |  |  |
| 5 |  |  | s5 |  | s6 |  |  | --9 | $3-9 \overline{4}$ |
| 6 | r7 | r7 |  | r7 |  | r7 |  |  |  |
| 7 |  |  | s5 |  | s6 |  |  |  | 0-94 |
| 8 |  |  | s5 |  | s6 |  |  |  | g11 |
| 9 | s̄ |  |  | s12 |  |  |  |  |  |
| 10 | - ${ }^{\text {2 }}$ | 58 |  |  |  | r2 |  |  |  |

## An Example



## LR(I) Items

- An $L R(1)$ item of a grammar in $G$ is a pair, ( $A \rightarrow \alpha \bullet \beta$, a ), of an $L R(0)$ item $A \rightarrow \alpha \bullet \beta$ and a lookahead symbol a
- The lookahead has no effect in an LR(1) item of the form $(A \rightarrow \alpha \bullet \beta$, a $)$, where $\beta$ is not $\varepsilon$
- An $\operatorname{LR}(1)$ item of the form $(A \rightarrow \alpha \bullet$, a ) calls for a reduction by $A \rightarrow \alpha$ only if the next input symbol is a


## The Closure Function

closure(I) =

## repeat

for any item $(A \rightarrow \alpha \bullet X \beta$, a) in I for any production $\mathrm{X} \rightarrow \gamma$
for any $\mathrm{b} \in \operatorname{First}(\beta \mathrm{a})$ $I=I \cup\{(X \rightarrow \bullet \gamma, b)\}$
until I does not change return I

## An Example

1. $\mathrm{S}^{\prime} \rightarrow \mathrm{S} \quad \mathrm{I}_{1}=\operatorname{closure}\left(\left\{\left(\mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S}, \$\right\}\right\}\right)=$
2. $S \rightarrow C$ C $\quad\left\{\left(S^{\prime} \rightarrow \bullet S, \$\right), \quad\right.$ First $(\$)=\{\$\}$
3. $\mathrm{C} \rightarrow \mathrm{c} \mathrm{C}$
$(S \rightarrow \bullet C C, \$)$,
$(\mathrm{C} \rightarrow \bullet \mathrm{c} C, \mathrm{c}),(\mathrm{C} \rightarrow \bullet \mathrm{c} \mathrm{C}, \mathrm{d})$,
First $(C \$)=\{c, d\} \quad(C \rightarrow \bullet d, c),(C \rightarrow \bullet d, d)\}$

## The Goto Function

goto( $\mathrm{I}, \mathrm{X})=$ set $J$ to the empty set for any item $(A \rightarrow \alpha \bullet X \beta, a)$ in I add $(A \rightarrow \alpha X \bullet \beta, a)$ to $J$ return closure(J)

## An Example

goto( $\left.\mathrm{I}_{1}, \mathrm{C}\right)$
$=\operatorname{closure}(\{\mathrm{S} \rightarrow \mathrm{C} \bullet \mathrm{C}, \$)\})$
$=\{S \rightarrow C \bullet C, \$),(C \rightarrow \bullet c C, \$),(C \rightarrow \bullet d, \$)\}$

## The Subset Construction Function

subset-construction(cfg) = initialize T to $\left\{\right.$ closure $\left.\left(\left\{\left(\mathrm{S}^{\prime} \rightarrow \bullet S, \$\right)\right\}\right)\right\}$ repeat
for each state I in T and each symbol $X$ let $J$ be goto(I, X)
if $J$ is not empty and not in $T$ then

$$
T=T \cup\{j\}
$$

until T does not change return T

## An Example

1. $S^{\prime} \rightarrow S$
2. $S \rightarrow C C$
3. $C \rightarrow c C$
4. $C \rightarrow d$

## An Example

$$
\begin{aligned}
& I_{1}: \text { closure }\left(\left\{\left(S^{\prime} \rightarrow \bullet S, \$\right)\right\}\right)= \\
& \left(S^{\prime} \rightarrow \bullet S, \$\right) \\
& (S \rightarrow \bullet C C, \$) \\
& (C \rightarrow \bullet c C, c / d) \\
& (C \rightarrow \bullet d, c / d)
\end{aligned}
$$

$\mathrm{I}_{4}: \operatorname{goto}\left(\mathrm{I}_{1}, \mathrm{c}\right)=$ $(\mathrm{C} \rightarrow \mathrm{c} \bullet \mathrm{C}, \mathrm{c} / \mathrm{d})$ $(\mathrm{C} \rightarrow \bullet \mathrm{c}, \mathrm{c} / \mathrm{d})$ $(\mathrm{C} \rightarrow \bullet \mathrm{d}, \mathrm{c} / \mathrm{d})$
$I_{5}: \operatorname{goto}\left(l_{1}, d\right)=$

$$
(\mathrm{C} \rightarrow \mathrm{~d} \bullet, \mathrm{c} / \mathrm{d})
$$

$I_{3}: \operatorname{goto}\left(I_{1}, C\right)=$
$(S \rightarrow C \bullet C, \$)$
$(\mathrm{C} \rightarrow \bullet \mathrm{c} C, \$)$
$(\mathrm{C} \rightarrow \bullet \mathrm{d}, \$)$
$I_{6}: \operatorname{goto}\left(I_{3}, C\right)=$ $(S \rightarrow C C \bullet, \$)$

## An Example

$I_{7}: \operatorname{goto}\left(I_{3}, \mathrm{c}\right)=\quad: \operatorname{goto}\left(\mathrm{I}_{4}, \mathrm{C}\right)=I_{4}$ $(C \rightarrow c \bullet C, \$)$ $(\mathrm{C} \rightarrow \bullet \mathrm{c} C, \$)$ $(C \rightarrow \bullet d, \$)$
$: \operatorname{goto}\left(l_{4}, d\right)=I_{5}$
$I_{10}: \operatorname{goto}\left(\mathrm{I}_{7}, \mathrm{C}\right)=$ $(\mathrm{C} \rightarrow \mathrm{C} C \bullet, \$)$
$I_{8}: \operatorname{goto}\left(I_{3}, d\right)=$ $(C \rightarrow d \bullet, \$)$
$: \operatorname{goto}\left(\mathrm{I}_{7}, \mathrm{c}\right)=\mathrm{I}_{7}$
$\mathrm{I}_{9}: \operatorname{goto}\left(\mathrm{I}_{4}, \mathrm{C}\right)=$
$(\mathrm{C} \rightarrow \mathrm{c} C \bullet, \mathrm{c} / \mathrm{d})$
$: \operatorname{goto}\left(\mathrm{I}_{7}, \mathrm{~d}\right)=\mathrm{I}_{8}$

## LR(1) Parsing Table Generation

LR(cfg) =
for each state I in subset-construction(cfg)
if $(\mathrm{A} \rightarrow \alpha \bullet \mathrm{a} \beta, \mathrm{b})$ in I and goto(I, a) $=\mathrm{J}$ for a terminal a then action $[1, a]=$ "shift J"
if $(\mathrm{A} \rightarrow \alpha \bullet, \mathrm{a})$ in I and $\mathrm{A} \neq \mathrm{S}^{\prime}$
then action[l, a] = "reduce A $\rightarrow \alpha$ "
if $(S ' \rightarrow S \bullet, \$)$ in I then action[I, \$] = "accept"
if $(A \rightarrow \alpha \bullet X \beta$, a) in I and goto( $I, X)=J$ for a nonterminal $X$ then goto $[I, X]=J$
all other entries in action and goto are made error

## An Example



## The Core of LR(1) Items

- The core of a set of $L R(1)$ Items is the set of their first components (i.e., LR(0) items)
- The core of the set of LR(1) items

$$
\begin{gathered}
\{(\mathrm{C} \rightarrow \mathrm{c} \bullet \mathrm{C}, \mathrm{c} / \mathrm{d}), \\
(\mathrm{C} \rightarrow \bullet \mathrm{C}, \mathrm{c} / \mathrm{d}), \\
(\mathrm{C} \rightarrow \bullet \mathrm{~d}, \mathrm{c} / \mathrm{d})\}
\end{gathered}
$$

is $\{C \rightarrow C \bullet C$,
$\mathrm{C} \rightarrow \bullet \mathrm{c}$,
$\mathrm{C} \rightarrow \bullet \mathrm{d}\}$

## Merging Cores

$\mathrm{I}_{4}:\{(\mathrm{C} \rightarrow \mathrm{c} \bullet \mathrm{C}, \mathrm{c} / \mathrm{d}),(\mathrm{C} \rightarrow \bullet \mathrm{c} \mathrm{C}, \mathrm{c} / \mathrm{d}),(\mathrm{C} \rightarrow \bullet \mathrm{d}, \mathrm{c} / \mathrm{d})\}$
$\cup I_{7}:\{(C \rightarrow c \bullet C, \$),(C \rightarrow \bullet c C, \$),(C \rightarrow \bullet d, \$)\}$
$\Rightarrow I_{47}:\{(C \rightarrow c \bullet C, c / d / \$),(C \rightarrow \bullet C, c / d / \$)$,
$(C \rightarrow \bullet d, c / d / \$)\}$
$I_{5}:\{(\mathrm{C} \rightarrow \mathrm{d} \bullet, \mathrm{c} / \mathrm{d})\} \cup \mathrm{I}_{8}:\{(\mathrm{C} \rightarrow \mathrm{d} \bullet, \$)\}$
$\Rightarrow I_{58}:\{(\mathrm{C} \rightarrow \mathrm{d} \bullet, \mathrm{c} / \mathrm{d} / \$)\}$
$\mathrm{I}_{\mathrm{g}}:\{(\mathrm{C} \rightarrow \mathrm{c} C \bullet, \mathrm{c} / \mathrm{d})\} \cup \mathrm{I}_{10}:\{(\mathrm{C} \rightarrow \mathrm{cC} \bullet, \$)\}$
$\Rightarrow \mathrm{I}_{910}:\{(\mathrm{C} \rightarrow \mathrm{c} C \bullet, \mathrm{c} / \mathrm{d} / \$)\}$

## LALR(1) Parsing Table Generation

LALR $(\mathrm{cfg})=$
for each state I in merge-core(subset-construction(cfg))
if $(\mathrm{A} \rightarrow \alpha \bullet \mathrm{a} \beta, \mathrm{b})$ in I and goto $(\mathrm{I}, \mathrm{a})=\mathrm{J}$ for a terminal a then action $[l, a]=$ "shift J"
if $(A \rightarrow \alpha \bullet, a)$ in $I$ and $A \neq S$ '
then action[l, a] = "reduce $A \rightarrow \alpha$ "
if $(S ' \rightarrow S \bullet, \$)$ in I then action[I, \$] = "accept"
if $(\mathrm{A} \rightarrow \alpha \bullet \mathrm{X} \beta, \mathrm{a})$ in I and goto $(\mathrm{I}, \mathrm{X})=\mathrm{J}$ for a nonterminal X then goto $[I, X]=\mathrm{J}$
all other entries in action and goto are made error

## An Example

|  |  | d | \$ | S |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | s47 |  |  |  | g3 |
| 2 |  |  | a |  |  |
| 3 | s47 |  |  |  | g6 |
| 47 | s47 | s5 ${ }^{\text {¢ }}$ |  |  | g91 |
| $5 \overline{8}$ |  | r4- |  |  |  |
| 6 |  |  | r2 |  |  |
| 910 | r3 | r3 | r3 |  |  |

## Shift/Reduce Conflicts

## $s t m t \rightarrow$ if expr then stmt <br> | if expr then stmt else stmt other

Stack<br>\$ - - - if expr then stmt<br>Input<br>else-- \$

Shift $\Rightarrow$ if expr then stmt else stmt Reduce $\Rightarrow$ if expr then stmt

## Reduce/Reduce Conflicts

stmt $\rightarrow$ id ( para_list )| expr := expr para_list $\rightarrow$ para_list , para | para
para $\rightarrow$ id
expr_list $\rightarrow$ expr_list , expr / expr expr $\rightarrow$ id ( expr_list ) |id

Stack
\$ - - id (id
\$- - procid (id

Input
, id ) - - \$
, id ) -- \$

## LR Grammars

- A grammar is $\operatorname{SLR}(1)$ iff its $\operatorname{SLR}(1)$ parsing table has no multiply-defined entries
- A grammar is $\operatorname{LR}(1)$ iff its $\operatorname{LR}(1)$ parsing table has no multiply-defined entries
- A grammar is LALR(1) iff its LALR(1) parsing table has no multiply-defined entries


## Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous Grammars


## Bison - A Parser Generator

A langauge for specifying parsers and semantic analyzers

lang.tab.c $\longrightarrow$ C compiler $\longrightarrow$ a.out


## Bison Programs

\%\{<br>C declarations<br>\%\}<br>Bison declarations<br>\%\%<br>Grammar rules<br>\%\%<br>Additional C code

## An Example

line $\rightarrow$ expr ' n '
expr $\rightarrow$ expr '+' term | term term $\rightarrow$ term '*' factor | factor
factor $\rightarrow$ '(' expr ')' | DIGIT

## An Example - expr.y

\%token DIGIT
\%start line
\%\%
line: expr ' $n$ '
expr: expr '+' term
term
,
term: term '*’ factor factor
factor: '(' expr ')'
DIGIT

## An Example - expr.y

\%token NEWLINE
\%token ADD
\%token MUL
\%token LP
\%token RP
\%token DIGIT
\%start line
\%\%
line: expr NEWLINE
;
expr: expr ADD term term
;
term: term MUL factor factor
factor: LP expr RP DIGIT

## An Example - expr.tab.h

\#define NEWLINE 278
\#define ADD 279
\#define MUL 280
\#define LP 281
\#define RP 282
\#define DIGIT 283

## Semantic Actions

line: expr ‘In’ \{printf("line: expr $\backslash \backslash n \backslash n ") ;\}$

## Semantic action

expr: expr '+' term \{printf("expr: expr + term\n");\} term \{printf("expr: term\n"\}
term: term "*’ factor \{printf("term: term * factorln";\} factor \{printf("term: factorln");\}
factor: '(' expr ')' \{printf("factor: ( expr )\n");\}
DIGIT \{printf("factor: DIGIT\n");\}

## Functions

- yyparse(): the parser function
- yylex(): the lexical analyzer function. Bison recognizes any non-positive value as indicating the end of the input


## Variables

- yylval: the attribute value of a token. Its default type is int, and can be declared to be multiple types in the first section using \%union \{
int ival; double dval; \}
- Tokens with attribute value can be declared as \%token <ival> intcon
\%token <dval> doublecon


## Conflict Resolutions

- A reduce/reduce conflict is resolved by choosing the production listed first
- A shift/reduce conflict is resolved in favor of shift
- A mechanism for assigning precedences and assocoativities to terminals


## Precedence and Associativity

- The precedence and associativity of operators are declared simultaneously \%nonassoc '<' /* lowest */ \%left ' + ' '-' \%right '^' /* highest */
- The precedence of a rule is determined by the precedence of its rightmost terminal
- The precedence of a rule can be modified by adding \%prec <terminal> to its right end


## An Example

\author{
\% <br> \#include <stdio.h> <br> \%\} <br> \%token NUMBER <br> \%left '+' ' - ' <br> \%left '*' '/" <br> \%right UMINUS

}
\%\%

## An Example

line : expr ' n ’
;
expr: expr ‘+’ expr
| expr '-’ expr
| expr '*' expr
| expr '/’ expr
| '-’ expr \%prec UMINUS
| '(' expr ')'
NUMBER

## Error Report

- The parser can report a syntax error by calling the user provided function yyerror(char *)
yyerror(char *s)
\{
fprintf(stderr, "\%s: line \%d\n", s, yylineno);

