
0

Translator Design

Introduction

1

Textbook and Other Classroom
Material

⚫ Class textbook

– Compilers: Principles, Techniques, and Tools,

Aho, Sethi, Ullman (red dragon book)

– Crafting a Compiler with C,

⚫ Other useful books

– Lex & Yacc, Levine, Mason and Brown

– Advanced Compiler Design & Implementation,

Steven Muchnick

2

Course Grading

⚫ Components

– Exam – 60%

– Laboratory homeworks – 40%

3

Why Compilers?

⚫ Compiler

– A program that translates from 1 language to

another

– It must preserve semantics of the source

– It should create an efficient version of the target

language

4

Why Compilers?

⚫ In the beginning, there was machine

language

– Ugly – writing code, debugging

– Then came textual assembly – still used

– High-level languages – Fortran, Pascal, C, C++

– Machine structures became too complex and

software management too difficult to continue

with low-level languages

5

Compilers are Translators

⚫ Fortran, C, C++, Java

⚫ Text processing

language

⚫ Command

Language

⚫ Natural

language

6

Compiler Structure

⚫ Source language

– Fortran, Pascal, C, C++

– VHDL, Tex, Html

⚫ Target language

– Machine code, assembly

– High-level languages, simply actions

Object
Program

Translator
Loader, Linker
and Run-time

System
Output

Source
Program

7

General Structure of a Modern
Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

Controlflow/Dataflow

Optimization

Code Generation

Source
Program

Assembly
Code

Scanner

Parser

High-level IR to low-level IR conversion

Build high-level IR

Symbol Table

Machine independent asm to machine dependent

Front end

Back end

8

Assembly code and Assemblers

⚫ Assemblers are often used at the compiler

back-end.

– Assemblers are low-level translators.

– They are machine-specific,

– perform mostly 1:1 translation between

mnemonics and machine code

Assembly
Code

Compiler Assembler Machine code

9

Interpreters

⚫ "Execute" the source language directly.

⚫ Interpreters directly produce the result of a

computation, whereas compilers produce

executable code that can produce this result.

⚫ Each language construct executes by

invoking a subroutine of the interpreter, rather

than a machine instruction.

⚫ “execution” is immediate

⚫ elaborate error checking is possible

⚫ Disadvantage: is slow; space overhead

10

Lexical Analysis (Scanner)

⚫ Extracts and identifies lowest level lexical

elements from a source stream

– Reserved words: for, if, switch

– Identifiers: “i”, “j”, “table”

– Constants: 3.14159, 17, “%d\n”

– Punctuation symbols: “(“, “)”, “,”, “+”

⚫ Removes non-grammatical elements from

the stream – ie spaces, comments

11

Lexical Analysis (Scanner)

⚫ Implemented with a Finite State Automata

(FSA)

– Set of states – partial inputs

– Transition functions to move between states

12

Lex/Flex

⚫ Automatic generation of scanners

– Hand-coded ones are faster

– But tedious to write, and error prone!

⚫ Lex/Flex

– Given a specification of regular expressions

– Generate a table driven FSA

– Output is a C program that you compile to

produce your scanner

13

Parser

⚫ Check input stream for syntactic correctness

– Framework for subsequent semantic processing

– Implemented as a push down automaton (PDA)

⚫ Lots of variations

– Hand coded, recursive descent?

– Table driven (top-down or bottom-up)

– For any non-trivial language, writing a correct
parser is a challenge

14

Parser

⚫ Yacc (yet another compiler compiler)/bison

– Given a context free grammar

– Generate a parser for that language (again a C

program)

15

Static Semantic Analysis

⚫ Several distinct actions to perform

– Check definition of identifiers, ascertain that the

usage is correct

– Disambiguate overloaded operators

– Translate from source to IR (intermediate

representation)

16

Static Semantic Analysis

⚫ Standard formalism used to define the

application of semantic rules is the Attribute

Grammar (AG)

– Graph that provides for the migration of

information around the parse tree

– Functions to apply to each node in the tree

17

Backend

⚫ Frontend –

– Statements, loops, etc

– These broken down into multiple assembly

statements

⚫ Machine independent assembly code

– 3-address code, RTL

– Infinite virtual registers, infinite resources

– “Standard” opcode repetoire

⚫ load/store architecture

18

Backend

⚫ Goals

– Optimize code quality

– Map application to real hardware

19

Dataflow and Control Flow
Analysis

⚫ Provide the necessary information about variable

usage and execution behavior to determine when

a transformation is legal/illegal

⚫ Dataflow analysis

– Identify when variables contain “interesting”

values

– Which instructions created values or consume

values

– DEF, USE, GEN, KILL

20

Dataflow and Control Flow Analysis

⚫ Control flow analysis

– Execution behavior caused by control

statements

– If’s, for/while loops, goto’s

– Control flow graph

21

Optimization

⚫ How to make the code go faster

⚫ Classical optimizations

– Dead code elimination – remove useless code

– Common subexpression elimimation – recomputing

the same thing multiple times

⚫ Machine independent (classical)

– Focus of this class

– Useful for almost all architectures

⚫ Machine dependent

– Depends on processor architecture

– Memory system, branches, dependences

22

Code Generation

⚫ Mapping machine independent assembly code to the

target architecture

⚫ Virtual to physical binding

– Instruction selection – best machine opcodes to

implement generic opcodes

– Register allocation – infinite virtual registers to N

physical registers

– Scheduling – binding to resources (ie adder1)

– Assembly emission

⚫ Machine assembly is our output, assembler, linker take

over to create binary

23

Compiler Writing Tools

⚫ Other terms: compiler generators, compiler compilers

⚫ scanner generators, example: lex

⚫ parser generators, example: yacc

⚫ symbol table routines,

⚫ code generation aids,

⚫ (optimizer generators, still a research topic)

⚫ These tools are useful, but bulk of work for

⚫ compiler writer is in semantic routines and

optimizations .

24

Sequence of Compiler Passes

⚫ In general, all compiler passes are run in

sequence.

– They read the internal program representation,

– process the information, and

– generate the output representation.

25

Sequence of Compiler Passes

⚫ For a simple compiler, we can make a few
simplifications. For example:
– Semantic routines and code generator are combined

– There is no optimizer

– All passes may be combined into one. That is, the
compiler
performs all steps in one run.

⚫ One-pass compilers do not need an internal
representation. They process a syntactic unit at a
time, performing all steps from scanning to code
generation.

26

Language Syntax and Semantics

⚫ An important distinction:

– Syntax defines the structure of a language

E.g., an IF clause has the structure:

IF (expression) THEN statements

– Semantics defines its meaning

E.g., an IF clause means:

test the expression; if it evaluates to true, execute the

statements.

27

Context-free and Context-sensitive
Syntax

⚫ The context-free syntax part specifies legal

sequences of symbols, independent of their

type and scope.

⚫ The context-sensitive syntax part defines

restrictions imposed by type and scope.

– Also called the "static semantics". E.g., all

identifiers must be declared, operands must be

type compatible, correct #parameters.

– Can be specified informally or through attribute

28

Compiler and Language Design

⚫ There is a strong mutual influence:

– hard to compile languages are hard to read

– easy to compile language lead to quality

compilers, better code, smaller compiler, more

reliable, cheaper, wider use, better diagnostics.

⚫ Example. Dynamic typing seems convenient

because type declaration is not needed. However,

such languages are

– hard to read because the type of an identifier is not

known

– hard to compile because the compiler cannot make

assumptions about the identifier's type

29

Compiler and Architecture Design

⚫ Complex instructions were available

when programming at assembly level.

⚫ RISC architecture became popular with

the advent of high-level languages.

⚫ Today, the development of new

instruction set architectures (ISA) is

heavily influenced by available compiler

technology.

