
Friend classes and functions. Nested classes 
 

 

❑ In addition to the inheritance and composition relations, the C++ language has 

also other methods by which a class can accesses the members of other classes: 

• friend classes, 

• nested classes. 

 

❑ Unlike composition and inheritance, in the case of friend classes or nested 

classes the access to class members cannot be done directly, but through some 

objects of the respective classes. 

 

 



A. Friend functions and friend classes 
 

❑ It is necessary in some cases that functions that uses objects of a certain classes 

to refer its private members (private or protected). 

Example. 

class Point { 

protected: 

  double x, y; 

Point(double a, double b): x(a), y(b) { } 

}; 

double Dist(Point& c, Point& b) { 

  double d = sqrt((a.x-b.x)*(a.x-b.x) + 

(a.y-b.y)*(a.y-b.y); 

  return d; 

} 

 

 



❑ A solution for this problem would be as the Dist function to be defined as a 

friend function of the Point class, and to have access to its private members: 

class Point { 

friend double Dist(Point& c, Point& b); 

protected: 

  double x, y; 

public: 

   Point(double a, double b) : x(a), y(b)  

      { } 

}; 

❑ An example of using the function Dist is: 

void Processing() { 

  Point p1(1, 1), p(2, 2); 

  double d = dist(p1, p2); 

  // ... 

} 

 



Remarks: 

• The declaration of a friend function is made in a class where the function is 

friend and not in the function declaration. 

• The declaration of a friend function will be always visible outside the class, 

regardless of the place where it is declared in the class - the friend function does 

not belong to the class to which it is friend; it is exterior to the class. 

• The friend function has access at all the members of the friend class, 

indifferently if they are public or not. 

• A friend function cannot have directly access to the members of its friend class, 

but only by the instances of this class. For example, in the body of Dist function  

the members x and y cannot be directly accessed by its name, so the following 

statement is incorrect: 
d = sqrt(x*x + y*y); 

❑ The declaration of a friend function is done by specifying the keyword friend 

before the function declaration. 



❑ Usually the friend functions of a class could be also defined as member 

functions of the respective class, case when they can have direct access to the 

class members. For example, the Dist function can be defined as member 

function to the class Point: 

class Point { 

protected: 

  double x, y; 

public: 

  Point(int a, int b) : x(a), y(b) { } 

  Double Dist(Point& b) { 

    double d = sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y); 

    return d; 

  } 

}; 

void Processing() { 

  Point p1(1, 1), p2(2, 4); 

  double d1 = p1.Dist(p2); 

  double d2 = p2.Dist(p1); //the same thing 

} 



 

❑ The difference between the using s member function and a friend function is a 

kind of asymmetry in the case of member function.  

❑ Because a function is regarded as implementing a certain operation with two 

or more operands (a binary, ternary. etc. operator), the method of friend 

function can be more natural, because the member function needs less 

parameters that the arity of the operation (the first operand is the hidden 

pointer this to the current object). 

❑ There are situations when is desired as a certain member function of a class to 

be friend of another class. 



Example: The class contorA contains a pointer to an object of a class A and a 

function which counts the reference number to this object. 

class A; 

class contorA { 

  A *a; 

public: 

  contorA(int k = 0); 

  int increment(); 

}; 

class A { 

  int n; 

public: 

  A(int k = 0) { n = k; } 

friend int contorA::increment(); 

}; 

 

int contorA::increment() { return a->n++; } 

contorA::contorA(int k) { a = new A; } 

 



int main() { 

  contorA c; 

  cout << c.increment() << endl; 

  cout << c.increment() << endl; 

  // ... 

} 

 

❑ In this case the function is prefixed with the class name to which it belongs. 

❑ If it desired that more member functions of a certain class A to have access to the 

private members of another class B, the whole class A can be declare as a friend 

class of the B class. In this case the declaration contains only the friend 

keyword, followed by the class declaration which is friend. 



❑ From previous example, the class contorA can be declared as a friend class of 

the A class. 

class A; 

class contorA { 

  A *a; 

public: 

  contorA(int k = 0); 

  int increment(); 

}; 

class A { 

  int n; 

public: 

friend class contorA; 

  A(int k = 0) { n = k; } 

}; 



Remark. The relation of friendship it is not a biunivocal relation, in the way that 

the following declaration does not mean that the members of the class A have 

access to the private members of the class contorA: 

friend class contorA; 

Example. The rewriting of the classes node and list from a simple linear linked 

list. 

class list; 

class node { 

friend class list; 

  int val; 

  node* next; 

public: 

  node(int v, node* p = 0)  

{ val = v; next = p; } 

  ~node() { next =0; } 

  void Add(int v) {  

    node* q = new node(v); 

    next = q; 



  } 

  int Val() const { return val; } 

  void Print() const { cout << val << endl; } 

}; 

class list { 

  node* first; 

  void Delete(); 

  void Copy(node* p); 

public: 

  list() { first = 0; } 

  list(list& l) { first = 0; Copy(l.first); } 

  ~list() { Delete(); first = 0; } 

  //adauga un element la sfarsitul listei 

  void AddLast(int v); 

  void Print() const { 

    for (node* p=first; p; p=p->next) 

      p->Print(); 

  } 

  int ListaVida() const { return first == 0; } 

}; 

 



void list::AddLast(int v) { 

  if (!first) 

    first = new node(v); 

  else { 

    for (node* q=first; q->next; q=q->next); 

    q->Add(v); 

  } 

} 

void list::Copy(node* p) { 

  first = 0; 

  for (node* q=p; q; q=q->next) 

    AddLast(q->val); 

} 

int main() { 

  list l; 

  l.AddLast(7); 

  l.AddLast(5); 

  l.AddLast(9); 

  l.Print(); 

  return 0; 



} 

Remark. There is a distinction between a class friend to another class and a 

derived class from another class.  

Example. 

class D1 { 

  // ... 

}; 

class B1 { 

friend class D1; 

  // ... 

}; 

class B { 

  // ... 

}; 

class D: public B { 

  // ... 

}; 



void Prelucrare() { 

  D1 d1; 

  D d; 

  // ... 

} 

  

• The object d of the class D contains as members all the members of the class B, 

at which are added the supplementary members owned by class D. 

• The object d1 of the class D1 contains (unlike the d object), only the members 

owned by class D1, not the ones of class B1. 

• So, the member functions of the class D1 can access private members of the 

class B1 only by using the objects of B1. 

 

 

 

 

 

 



❑ Python has no friend functions and friend classes 



B. Nested classes 
 

 

❑ The presence of several friend classes or functions in a class hierarchy denotes 

an inefficient design of the hierarchy. In these cases it is desired to create a 

hierarchy which minimizes the appearance of friend functions and classes: 

• the redefinition of friend functions as member functions, 

• the redefinition of friend classes as nested classes 

Example. The class list can be defined in a pure object-oriented style as follows 

(the implementations of the functions from the class list are identical as in the 

previous example): 

class list { 

  struct node { 

    int val; 

    node* next; 

    node(int v, node*p = 0): val(v), next(p)  

{ } 

    ~node() { next = 0; } 



    void Add(int v) {  

      node* q = new node(v); 

      next = q; 

    } 

    void Print() const  

{ cout << val << endl; } 

  }; 

  node *first; 

  void Delete(); 

  void Copy(node* p); 

public: 

  list() { first = 0; } 

  list(list& l) { first = 0; Copy(l.first); } 

  ~list() { Delete(); first = 0; } 

  void AddLast(int v); 

  void Print() const; 

  int ListaVida() const { return first == 0; } 

}; 

 



❑ A nested class defined inside another class can be considered as a member 

definition of the respective class and can be defined in any part of the respective 

class (private, protected or public). Its accessibility depends of the 

class section in which it was defined. 

❑ The accessibility of members of a nested class respects the general rules of 

accessibility of the class members: 

• The private members from a class B, nested in a class A, cannot be accessed 

in the class A, regardless of the section where the class B has been defined; 

• In the case when it is desired as the whole class A to have access to the 

private members of the class B, the classes can be defined as friend. 



Example. The classes B and C are defined inside the class A, so each of them 

have access to the private members of the other classe. 

 
class A { 

  int n; 

  class B { 

  friend class A; 

    int k; 

  public: 

    B(int n = 0): k(n) 

{ } 

    int K() const  

{ return k; } 

  }; 

friend class B; 

public: 

  class C { 

  friend class A; 

    int l; 

  public: 

    C(int n = 0): l(n) 

{ } 

    int L() const  

{ return l; } 

  }; 

friend class C; 

  A(int a): n(a) { } 

  int N() const  

{ return n; } 

  // ... 

}; 

 

 



❑ The accessibility of a nested class concerns only the class name regarded as a 

data type and not its members. The access to the members of the nested class 

can be realized by an instance object, as in the case of the friend class. 

❑ In the previous example of the list class, the node class is not directly accessed 

by the member functions of the list class; for this it is used a data member, first, 

which is a pointer to the node class. 

❑ The implementation of functions (that are not inline) of a nested class can be 

made outside the class where it is defined as nested, by using the resolution 

operator. 

Example. The implemention of the function Add from the class node: 

class list { 

  struct node { 

    int val; 

    node* next; 

    node(int v, node*p = 0): val(v), next(p)  

{ } 

    ~node() { next = 0; } 



    void Add (int v); 

    void Print() const { cout << val << endl; } 

  }; 

  node *first; 

  // ... 

}; 

void list::node::Add (int v) {  

  node* q = new node(v); 

  next = q; 

} 

❑ In the case when a nested class has static data, their access can be realized also 

with the resolution operator. 



Example. The example with classes A, B and C is used again, by using the static 

data and functions: 

class A { 

  int n; 

  static int v; 

  class B { 

  friend class A; 

    int k; 

    static int v; 

  public: 

    B(int n = 0): k(n) { } 

    int K() const  

{ return k; } 

    static void SetV( 

int n) { B::v = n; } 

static void SetAV( 

int n) { A::v = n; } 

  }; 

friend class B; 

public: 

  class C { 

  friend class A; 

    int l; 

    static int v; 

  public: 

    C(int n = 0): l(n) { } 

    int L() const  

{ return l; } 

    static void SetV( 

int n) { C::v = n; } 

    static void SetAV( 

int n) { A::v = n; } 

  }; 

friend class C; 

  A(int a): n(a) { } 

  int N() const  

{ return n; } 

  static void SetV(int a)  

{ v = a; } 

  // ... 



}; 

 

int A::v = 0; 

int A::B::v = 0; 

int A::C::v = 0; 

 

int main() { 

  A::C::SetV(1); 

  A::C::SetAV(3); 

  A::SetV(0); 

  return 0; 

}

❑ The enumerations, even they do not represent classes, are data types and they 

can be defined inside other classes. The enumeration name and also the 

elements values can be used in classes inside which they have been defined, and 

in the case when they are defined in a public section, they can be used also 

outside the classes. 

Example. The class Clock class allows the display of the current hour of a clock 

for different predefined time zones: LondonHour, ParisHour, BucharestHour, 

MoskowHour. A clock is considered to be fixed at the Bucharest hour. 

#include <iostream> 

using namespace std; 

class clock { 

  int hour, min, sec; 

public: 



  enum HourDisplay { 

    LondonHour, 

    ParisHour, 

    BucharestHour, 

    MoskowHour 

  }; 

  clock(int o = 0, int m = 0, int s = 0): 

 hour(o), min(m), sec(s) { } 

  void DisplayHour(HourDisplay h) { 

    cout << “hour “ << hour + h - BucharestHour; 

    cout << “: min “ << min; 

    cout << “: sec “ << sec << endl; 

  } 

}; 

int main() { 

  clock c(14, 20, 50); 

  c.DisplayHour(clock::BucharestHour); 

  c.DisplayHour(clock::ParisHour); 

  c.DisplayHour(clock::LondonHour); 

  c.DisplayHour(clock::MoskowHour); 

  return 0; 

} 



❑ Python has the concept of nested classes (inner classes) 

 

Example (a square with a hole inside) 
 

import math 

class SquareWithHole: 

    class Circle: 

        def __init__(self, r): 

            self.r = r 

        def area(self): 

            return math.pi * self.r * self.r 

    def __init__(self, l, r): 

        self.l = l 

        self.hole = self.Circle(r) 

    def area(self): 

        return self.l*self.l - self.hole.area() 

sh = SquareWithHole(4, 2) 

a1 = sh.area() 

a2 = sh.hole.area() 

print(a1, a2) 



❑ A class variable of a inner class cannot have access to a class variable of its 

outer class 

 

Example : 

 
class A: 

    l1 = [1,2,3] 

     l2 = [4,5,6] 

     class B: 

        l3 = l1 + l2 # error : l1, l2 unknown references 

 

class A: 

    l1 = [1,2,3] 

     l2 = [4,5,6] 

     class B: 

        l3 = A.l1 + A.l2 # error : A unknown reference 

 

❑ Only instance variables can have access to the class variables of the outer 

class 

 



Example 

 
class A: 

    l1 = [1,2,3] 

    l2 = [4,5,6] 

    class B: 

        def __init__(self): 

            self.l3 = A.l1 + A.l2 

    def __init__(self): 

        self.b = self.B() 

 

a = A() 

l = a.b.l3 

print(l)  # [1,2,3,4,5,6] 

 

❑  

 

 


