

Class hierarchies

❑ The inheritance represents a distinctive element of the object-oriented programming

paradigm

❑ Inheritance is also called a derivation operation: a class A, which inherits the

members of another class B, it is said to be derived from the class B, and the class A

is said a base class for B.

❑ In the UML language the inheritance relation is denoted as, , where the arrow

being oriented to the base class

Example. The classes P and Q inherit the class X.

class X {

 // ...

};

 class P: public X {

 // ...

};

class Q: X {

 // ...

};

 X

 P Q

Python example:

class X:

 pass

class P(X):

 pass

class Q(X):

 pass

A. Class inheritance

❑ A class can inherit only one class (simple inheritance), or several classes (multiple

inheritance).

❑ A class hierarchy can be build based on the inheritance relation.

• When using simple inheritance, the class hierarchy has a tree structure, all

classes from the hierarchy being derived from a single base class.

• In the case when multiple inheritance is used, the hierarchy structure represents

an oriented graph.

Remark. Unions cannot be part in a class hierarchy, because they cannot be base

classes, neither derived classes.

Example.

struct Point {

 double x,y;

 vo id SetCoord (double a, double b) {

 x = a;

 y = b;

 }

};

struct Circle: Point {

 double r;

 void SetRadius (double a) { r = a; }

};

❑ An object from a derived class is treated by the compiler as a special type of

composition relation.

❑ The memory image of an object of a derived class contains:

• A slot for each member specified in the derived class,

• An additional slot representing a hidden object, which is an instance of the base

class.

❑ For example, for the previous hierarchy (Point – Circle), the memory image of an

instance of the class Circle has the following structure:

❑ A base class can be inherited in a derived class in three ways:

❑ public, protected, and private.

❑ In the case when this keyword is missing, the inheritance is by default public for

struct and private for class.

Point

x

y

r

❑ The access at the members of the base class can be sometimes restricted in the

derived class, but never more restrictively:

The access type

of a member in

the base class

Inheritance

type

The access type

of the member in

the derived class

Public

Private

Protected

Public

Public

Inaccessible

Protected

Public

Private

Protected

Private

Private

Inaccessible

Private

Public

Private

Protected

Protected

Protected

Inaccessible

Protected

❑ Python has only public inheritance

Example.

class A {

 int p;

public:

 int q;

protected:

 int r;

// ...

};

class A1: A {

 int x;

public:

 void f1();

// ...

};

class A2: public A {

 int y;

public:

 void f2();

// ...

};

void Processing() {

 A1 a1;

 A2 a2;

 // Error !!!

 int m = a1.q;

 // OK

 int n = a2.q;

}

❑ It is possible as certain public members from the base class, that become private by a

inheritance of private type, to become public in the derived class:

❑ their name must be specified after the keyword public (only the name, not its

associated data type).

Example.

class A1: A {

 int x;

public:

 A::q;

 void f1();

 // ...

};

❑ Python has only public inheritance

❑ The memory structure of an instance in Python is totally different from that of the

C++ language

• A class instance has a namespace implemented as a dictionary that contains

instance attributes

• A class has also a namespace implemented as a dictionary that contains class

attributes

• First, the name of an attribute is searched in the dictionary of the current instance

• If the name is not found, then it is searched in the dictionary of the class of the

current class

❑ Example:

class A:

 k = 1

 def __init__(self, a):

 self.a = a

class B(A):

 def __init__(self, a, b):

 super().__init__(a)

 self.b = b

class C(A):

 def __init__(self, c):

 self.c = c

 def f(self):

 print(k)

a = A(7)

b = B(7, 5)

c = C(3)

print('a.dict = ', a.__dict__)

print('b.dict = ', b.__dict__)

print('c.dict = ', c.__dict__)

print('A.dict_keys = ', A.__dict__.keys())

print('C.dict_keys = ', B.__dict__.keys())

print('C.dict_keys = ', C.__dict__.keys())

The output:

a.dict = {'a': 7}

b.dict = {'a': 7, 'b': 5}

c.dict = {'c': 3}

A.dict_keys = dict_keys(['__dict__', '__weakref__', 'k',

 '__init__', '__doc__', '__module__'])

C.dict_keys = dict_keys(['__module__', '__init__',

 '__doc__'])

C.dict_keys = dict_keys(['__module__', 'f', '__init__',

 '__doc__'])

B. Constructors and destructors in the class hierarchies

❑ The constructors and destructors are the only functions of a base class (excepting

the assignment operator) which cannot be inherited in a derived class:

• Creation and destruction of these objects belong to their class and they cannot be

passed down in a class hierarchy

❑ An object of derived class is similar to a composed object, which contains a hidden

sub-object of the base class:

• The constructor of the object of the derived class must call first the constructor

of the base class

❑ The call of the constructor of the hidden sub-object can be realized explicitly in the

constructor initializer list of the derived class (using the name of the base class)

Example.

class Point {

protected:

 double x, y;

public:

 Point(double a = 0, double b = 0) {

 SetCoord (a, b);

 }

 void SetCoord(double a, double b) { x = a; y = b; }

 double X() const { return x; }

 double Y() const { return y; }

};

class Circle: public Point {

 double r;

public:

 Circle(double a = 0, double b = 0, double c = 1):

 Point(a,b), r(c) { }

 Circle(Circle &c): Point(c.x, c.y), r(c.r) {}

 void SetR(double a) { r = 0; }

};

❑ A constructor for a class can be automatically generated by the compiler, in the case

when the respective class does not have a declared constructor.

❑ There is an exception, in the case when a class is derived from one or more base

classes, and all these base classes have explicit constructors which contain

parameters:

• In this case the derived class must contain an explicit constructor that explicit

calls the constructors of the base classes that have parameters.

❑ The destructors of the objects of the derived classes call by default the destructors of

the objects of the derived classes in reverse order of the constructors call order.

❑ For example, for an object ob of a class D derived from a class B, the order of calling

destructors is:

• destructor of the ob object (in the class D)

• destructor of class B

• destructors of supplementary members of class D

• destructors of members from the class B

❑ In the case of multiple inheritance, the order of calling the constructors of the

objects from the base classes is the order of their declaration in the derived class

• the calling of destructors is performed in reverse order

Example. A macrodefinition is used for defining classes.

#include <iostream>

using namespace std;

#define CLASS(ID) class ID {\

 public:\

 ID(int){cout<<”Class Constructor ”<<#ID<<endl;}\

 ~ID(){cout<<”Class Destructor ”<<#ID<<endl;}\

 };

CLASS(B1);

CLASS(B2);

CLASS(M1);

CLASS(M2);

class D: public B1, B2 {

 M1 m1;

 M2 m2;

public:

 D(int): m1(10), m2(20), B1(30), B2(40) {

 cout << ”Class Constructor D” << endl;

 }

 ~D() { cout << ”Class Destructor D” << endl; }

};

int main() {

 D d(0);

 // ...

}

The output of the program is the following:

Class Constructor B1

Class Constructor B2

Class Constructor M1

Class Constructor M2

Class Constructor D

Class Destructor D

Class Destructor M2

Class Destructor M1

Class Destructor B2

Class Destructor B1

❑ If a derived class does not have a defined copy-constructor, this constructor will be

automatically generated by the compiler.

❑ It calls the copy-constructors of the base classes, followed (if necessary) by the

copy-constructors (or pseudo-constructors) of the member objects of the class

Example.

#include <iostream>

using namespace std;

class Base {

 int n;

public:

 Base(int i): n(i) {

 cout << ”Base(int i)” << endl;

 }

 Base(const Base& b): n(b.n) {

 cout << ”Base(const Base& b)” << endl;

 }

 Base(): n(0) { cout << ”Base()” << endl; }

 void Print() const {

 cout << ”Base; n=“ << n << endl;

 }

};

class Member {

 int n;

public:

 Member(int i): n(i) {

 cout << ”Member(int i)” << endl;

 }

 Member(const Member& m): n(m.n) {

 cout << ”Member(const Member& m)” << endl;

 }

 void Print() const {

 cout << ”Member; n=“ << n << endl;

 }

};

class Derived: public Base {

 int n;

 Member m;

public:

 Derived(int i): Base(i), n(i), m(i) {

 cout << ”Derived(int i)” << endl;

 }

 void Print() const {

 cout << ”Derived; n=“ << n << endl;

 Base::Print();

 m.Print();

 }

};

int main() {

 Derived o1(7);

 cout << ” copy-constructor call: “ << endl;

 Derived o2 = o1;

 cout << ”Values in o2: ” << endl;

 o2.Print();

 return 0;

}

Program output:

Base(int i)

Member(int i)

Derived(int i)

Copy-constructor call:

Base(const Base& b)

Member(const Member& m)

Values in o2:

Derived; n=7

Base; n=7

Member; n=7

❑ In the case when a copy-constructor is explicitly defined in a derived class, it must

call explicitly (in the constructor initializer list) the copy-constructor of the base

class.

Example.

A wrong copy-constructor of the class Derived:

Derived(const Derived& d): n(d.n), m(d.m) { }

The last three lines of program output are:

Derived; n=7

Base; n=0

Member; n=7

A correct copy-constructor of the class Derived:

Derived(const Derived& d): Base(d), n(d.n), m(d.m) { }

The program output will be the same as in the last example.

❑ In Python, constructors are not called automatically (Python is interpreted, not

compiled)

❑ The __init__ function of a subclass can call the __init__ functions of its

superclasses

❑ In the following example, the __init__ function of class B calls the __init__

function of its superclass (A), while __init__ function of the class C does not call

it:

class A:

 k = 1

 def __init__(self, a):

 self.a = a

class B(A):

 def __init__(self, a, b):

 super().__init__(a)

 self.b = b

class C(A):

 def __init__(self, c):

 self.c = c

 def f(self):

 print(k)

a = A(7)

b = B(7, 5)

c = C(3)

print('a.dict = ', a.__dict__)

print('b.dict = ', b.__dict__)

print('c.dict = ', c.__dict__)

>>>

a.dict = {'a': 7}

b.dict = {'a': 7, 'b': 5}

c.dict = {'c': 3}

❑ In Python, there is a difference between the memory structure of a compound object

and the instance of a subclass

❑ Example:

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x, self.y)

class Circle1(Point):

 def __init__(self, x, y, r):

 super().__init__(x, y)

 self.r = r

 def __str__(self):

 return "({0},{1},{2})".format(self.x, self.y,

 self.r)

class Circle2:

 def __init__(self, x, y, r):

 self.p = Point(x, y)

 self.r = r

 def __str__(self):

 return "({0},{1},{2})".format(self.p.x, self.p.y,

 self.r)

c1 = Circle1(3, 5, 1)

c2 = Circle2(2, 4, 1)

print(c1.__dict__)

print(c2.__dict__)

>>>

{'y': 5, 'r': 1, 'x': 3}

{'r': 1, 'p': <__main__.Point object at 0x0060DB30>}

❑ The __init__ function of a superclass can be called in several ways. For the

above class B:

• Using the name of the superclass:

A.__init__(a)

• Using the function super():

super().__init__(a) # new-style classes

super(B, self).__init__(a)

❑ In new-style classes, the super() function returns a proxy object that allows to call

methods of a parent or a sibling class

❑ super() uses __mro__ (method resolution order):

• The method resolution order (MRO) is the set of rules that construct the

linearization of a class

• The linearization of a class C is the list of the ancestors of C, including the class

itself, ordered from the nearest ancestor to the furthest

❑ The syntax:

 super().method(args)

 is similar to:

 super(subclass, instance).method(args)

 because for each instance, its associated class can be determined:

 super(self.__class__, self).method(args)

❑ For an instance a, the name of its related class can be determined in two ways:

a.__class__

type(a)

❑ In new-style classes, both variants are equivalent

• This type of information (RTTI: Run-Time Type Information) can be used in C++

only at runtime, and in the presence of polymorphism

❑ Other two functions related to type names are isinstance() and

issubclass():

• isinstance(object, classinfo), which determines if an object is an

instance of a class

• issubclass(class, classinfo), which determines if a class is a

subclass of another class

class A:

 pass

class B(A):

 pass

issubclass(B, A) # >>> True

isinstance(B, A) # >>> False

a = A()

b = B()

isinstance(a, A) # >>> True

isinstance(a, B) # >>> False

isinstance(a, object) # >>> True

C. Public and private inheritance

❑ The using of public or private inheritance type has a distinct significance in

designing and developing an application

C1. Public inheritance

❑ The public inheritance is used in the case when a derived class represents

conceptually a specialization of the base class

❑ In the literature this relation type is denoted a “is-a” relation:

• The class student is a specialization of the class person, because every student is

a person

❑ This type of inheritance supposes that the derived class inherits both the interface

and the implementation of the base class:

• In this way an object of the derived class can be used instead of an object from

the base class

Example. Considering the classes Point and Circle from the previous example, the

function Distance determines the distances between two points:

double Distance (Point& p1, Point& p2) {

 double d = sqrt((p1.X()-p2.X())*(p1.X()-p2.X())+

 (p1.Y()-p2.Y())*(p1.Y()-p2.Y()));

 return d;

}

The next sequence displays correct the values 1 and 4:

Point p1(1, 1), p2(0, 0);

Circle c1(7, 7), c2(3, 3);

double d1 = Distance(p1, p2);

double d2 = Distance(c1, c2);

cout << d1 << d2 << endl;

❑ An important propriety of the inheritance relation is the fact that a class that is public

derived from a base class is treated as a subtype of that base class:

• All instances of the derived class are compatible with the objects of the base

class, and they can be used instead of them.

• The following sequence is correct:

Point p2;

p2 = c1;

❑ In this case, the assignment operation copies only the members of the base class

❑ The previous rule of assignment compatibility is extended also to pointers and object

references. For example:

class B { /* ... */ };

class A1: public B { /* ... */ };

class A2: public B { /* ... */ };

A1 a1;

A2 a2;

B *pb;

pb = &a1;

pb = &a2;

❑ In the previous example there exists a default conversion type from a pointer to a

derived class to a pointer to the base class. Such a conversion is denoted upcasting

❑ The upcasting operation is frequently used in the applications that use class

hierarchies, allowing a uniform treatment of the objects from such a hierarchy by

using pointers to the base class

❑ A public derived class inherits both the declaration and the implementation of the

base class:

• In the derived class some of the members from the base class can be redefined.

• The redefinition of a member hides in the derived class the member from the

base class with the same name.

Example.

class A {

public:

 void f() const {

 cout << ”f in class A” << endl;

 }

};

class B: public A {

public:

 void f() const {

 cout << ”f in class B” << endl;

 }

};

int main (){

 A a;

 a.f(); //f from the class A

 B b;

 b.f(); //f from the class B

 b.A::f(); //f from the class A

 // ...

}

Remark. The redefinition of the members from a base class in a derived class is not a

good idea, because it supposes an error of designing of the class hierarchy. A better

idea is the using of virtual functions instead of redefining functions.

Example. There are birds that do not fly, even if the great majority of them flies: for

example the penguin.

class Bird {

public:

 void flies () const {

 cout << ”bird flies” << endl;

 }

 // ...

};

class Penguin: public Bird { /* ... */ }

Bird eagle;

Penguin penguin;

eagle.flies(); //correct

penguin.flies(); //error!!

 Bird

 Penguin
zburatoare

A way for modify of this code is the redefinition of the flies function in the penguin

class:

class Penguin: public Bird {

public:

 void flies () const {

 cout << ”bird does not fly” << endl;

 }

 // ...

};

// ...

Penguin penguin;

penguin.flies(); //correct

A better solution is a correct design of the class hierarchy that must distinguish

between the two bird categories:

Flying
Bird

Not flying
Bird

Eagle Penguin

Bird

class FlyingBird: public Bird {

public:

 void flies () const {

 cout << ”bird flies” << endl;

 }

 // ...

};

class NotFlyingBird: public Bird {

public:

 void flies () const {

 cout << ”bird does not fly” << endl;

 }

 // ...

};

class Eagle: public FlyingBird {

 // ...

};

class Penguin: public NotFlyingBird {

 //...

};

// ...

Eagle eagle;

Penguin penguin;

Eagle.flies();

❑ In Python there is only public inheritance, and then the subtyping relation between a

subclass and its superclass can be considered as be present

import math

class Point1:

 def __init__(self, x, y):

 self.x = x

 self.y = y

class Circle1(Point1):

 def __init__(self, x, y, r):

 super().__init__(x, y)

 self.r = r

def dist(p1, p2):

 return math.sqrt(pow(p1.x-p2.x, 2) + pow(p1.y-p2.y, 2))

p1 = Point1(0, 0)

p2 = Point1(1, 1)

c1 = Circle1(0, 0, 1)

c2 = Circle1(1, 1, 1)

d1 = dist(p1, p2)

d2 = dist(c1, c2)

print(d1, d2) # d1==d2

❑ In fact, Python has no strong typing, so the above example is not a really subtyping

relation

❑ Like other dynamic languages, Python has a so-called duck typing (or automatic

interfaces)

❑ Duck typing is a feature of a type system where the semantics of a class is

determined by his ability to respond to some message (method or property)

❑ The name comes from the phrase "If it looks like a duck and quacks like a duck,

then it probably is a duck"

❑ With normal typing, suitability is determined by an object's type. In duck typing, an

object's suitability is determined by the presence of certain methods and properties,

rather than the type of the object itself

❑ Duck typing is similar to, but distinct from structural typing:

• Structural typing is a static typing system that determines type compatibility

and equivalence by a type's structure, whereas duck typing is dynamic and

determines type compatibility by only that part of a type's structure that is

accessed during run time

C2. Private inheritance

❑ In private inheritance, all the members of the base class become private in the

derived class (they are not longer available outside of the derived class).

❑ In this way, a derived class inherits only the implementation of the base class, and

not its interface.

• This kind of relation is called in the literature as “an_implementation_of”

relation

❑ In the case of private inheritance an object from the derived class is not converted by

the compiler to a base class object (the derived class does not represent a subtype of

the base class).

Example. A new perspective of the previous defined classes, Point and Circle.

class Point {

protected:

 double x, y;

public:

 void SetCoord (double a, double b) {

 x = a;

 x = b;

 }

 Point (double a = 0, double b = 0) {

 SetCoord(a, b);

 }

 double X() const { return x; }

 double Y() const { return y; }

};

class Circle: Point {

public:

 double r;

 void SetRadius (double a = 1) { r = a; }

 Circle (double a = 0, double b = 0, double c = 1):

 Point(a,b),r(c) { }

};

double Distance(Point p1, Point p2) {

 double d = sqrt((p1.X()-p2.X())*(p1.X()-p2.X())+

 (p1.Y()-p2.Y())*(p1.Y()-p2.Y()));

 return d;

}

// ...

point p1(0, 0), p2(1, 1);

circle c1(3, 3), c2(7, 7);

double d1 = Distance(p1, p2); //correct

double d2 = Distance(c1, c2); //error!!!

Remark. The same type of relation, is_an_implementation_of, is also represented by

the objects composition (for a sub-object of a compound class, only the

implementation of the class to which the sub-object belongs to is inherited, and not its

interface):

• Usually, it is indicated to use objects composition, every time it is possible, instead

of using private inheritance

• The using of private inheritance is necessary only in the cases when the base class

contains protected members that otherwise cannot be used in the derived class

Example. Defining a class, OrderedList, which stores the elements of a list in an

increasing order, by using the already defined class list.

class OrderedList: list {

public:

 OrderedList();

 ~ OrderedList();

 void AddOrdered (int);

 void Print();

};

❑ In Python there is not private inheritance

D. Multiple inheritance

❑ Multiple inheritance: when a derived class inherits from more than one base classes

❑ Not all the languages which support the object-oriented programming paradigm

accept multiple inheritance

❑ Example: Smalltalk, a pure object-oriented language, has a predefined class

hierarchy representing a tree with only one root called Object.

• Every class defined by the programmer must be derived from Object or from a

class derived from Object

❑ The C++ language is not a pure object-oriented language (it is a hybrid language),

but it has the advantage of allowing the creation of classes and classes hierarchies,

independent of a certain predefined hierarchy

❑ An example of multiple inheritance exists in the predefined classes for Input/Output

operations (defined in the iostream header file). The diagram of this hierarchy is

presented in the following figure:

❑ There are two important problems which can appear in the case of using multiple

inheritance:

• the duplication of hidden objects

• the existence of some members with the same name in the different base

classes

❑ The duplication of hidden objects can appear in the case of hierarchies that has a

structure as presented in the previous figure

• the general case: when there are several paths between a derived class and a

base class, there is a multiplied hidden object for each path

 istream

 ios

 ostream

 iostream

Example:

class B {

 // ...

};

class M1: public B {

 int a;

 // ...

};

class M2: public B {

 int b;

 // ...

};

class MI: public M1, public M2

{

 int m;

 // ...

};

an object of the class MI has the following structure, as presented in the following

figure:

m

b

Class B

a

Class B

❑ There are two identical hidden sub-objects, corresponding to the same class B. This

fact produces an additional amount of memory, which can induce ambiguities in an

application which it is not correct designed

❑ The second problem of multiple inheritance is generated by the case in which several

base classes have a member with the same name: how this member will be used in

the derived class?

Example:

class B1 {

public:

 int a;

 // ...

};

class B2 {

public:

 double a;

 // ...

};

class D: public B1, public B2 {

 // ...

};

void Processing () {

 D d;

 d.a = 5; // error!!

}

❑ In this case there exist two common variants of avoiding the confusion:

• the explicit use of a certain member by using the resolution operator

• the redefinition in the base class of a member with the same name

❑ In the first case the necessity of writing correct code is exclusively the task of the

programmers who uses a class hierarchy already designed. For example, the

statement for the previous example that generates the error could be written as

follows:

d.B1::a = 5;

❑ The second case represents a problem for the programmers who design the class

hierarchy

Example: A class hierarchy that defines a class CircleText thate allows displaying a

text in the circle (the implementations of member functions that are not inline were

not specified):

class Point {

protected:

 int x, y;

public:

 Point(int a, int b): x(a), y(b) { }

 int X() const { return x; }

 int Y() const { return y; }

};

// graphic point

class GPoint: public Point {

protected:

 int visible;

public:

 GPoint(int a, int b): Point(a, b), visible(1)

{ }

 // displays a graphic point on the screen

 void Show();

 void Hide() { visible = 0; }

 int IsVisible() const { return visible; }

 void Translate(int a, int b) { x = a; y = b; }

};

class Circle: public GPoint {

protected:

 int r;

public:

 Circle(int a, int b, int c): GPoint(a, b), r(c) { }

 void Show(); //draw a circle

};

//displays a message on the screen in a rectangle

class Message: public Point {

public:

 char *msg; //message

 int l, L; //rectangle dimensions

 Message(int a, int b, int c, int d, char *m):

 Point(a, b), l(c), L(d), msg(m) { }

 void Show(); //displays the message

};

class CircleText: Circle, Message {

public:

 CircleText(int a, int b, int r, char *m):

 Circle(a, b, r), Message(a, b, r, r, m) { }

 void Show() //displays the circle with the message inside

 {

 Circle::Show();

 Message::Show();

 }

};

int main() {

 // ...

 CircleTexT c1(250, 100, 25, ”circle C1”);

 c1.Show();

 // ...

}

❑ In the previous class hierarchy the multiple inheritance it is not absolutely necessary.

A more real alternative can be the class CircleText as a composed class which

contains inside two private objects, instances of the Circle and Message classes.

class CircleText {

 Circle circle;

 Message message;

public:

 CircleText(int a, int b, int r, char *m):

 circle(a, b, r), message(a, b, r, r, m) { }

 // displays the message in the circle

 void Show()

 {

 circle.Show();

 message.Show();

 }

}

❑ The necessity of using multiple inheritance can appear when a derived class needs

the control over the base classes (by using the virtual mechanism, for example)

Example

❑ Another example is referring to the necessity of using some class hierarchies for

which the sources cannot be modified (there are available only libraries and header

files)

❑ Consider a class Container, which stores the pointers to a list of abstract objects

from the Container class. In order to be able to use the Container class in an

application for storing objects belonging to another class, Figure, where the

application cannot have access, a new class, DerivedFigure, can be created by

inheriting both the Object and Figure classes, as presented in the next figure.

Container

Object Figure

DerivedFigure

*

In this way, by using the upcasting mechanism, the container can store also

references to the objects of the class DerivedFigure

❑ Like C++ but unlike Java, Python allows multiple inheritance:

class A: pass

class B: pass

class C(A, B): pass

❑ Multiple inheritance can pose a conflict when the same method (or other attribute)

name is defined in more than one superclass

❑ Such a conflict is resolved either automatically by the inheritance search order, or

manually in the code:

• By default, inheritance chooses the first occurrence of an attribute it finds when

an attribute is referenced normally
self.method(), self.attr

• In this mode, Python chooses the lowest and leftmost in classic classes, and in

non-diamond patterns in all classes

• new-style classes may choose an option to the right in diamond patterns

• Explicit: In some class models, an attribute can be selected explicitly by

referencing it through its class name:

superclass.method(self), superclass.attr

❑ The search order for an attribute of a class (the ancestor tree) is determined by the

Method Resolution Order (MRO) algorithm

❑ This ordered list can be retrieved by using the __mro__ attribute:

class A: pass

class B: pass

class C(A, B): pass

class D: pass

class E(C, D): pass

print(E.__mro__)

(<class '__main__.E'>, <class '__main__.C'>,

<class '__main__.A'>, <class '__main__.B'>,

<class '__main__.D'>, <class 'object'>)

❑ The C3 Method Resolution Order:

• The linearization of C is the sum of C plus the merge of the linearizations of the

parents and the list of the parents:

 L[C(B1 ... BN)] = C + merge(L[B1] ... L[BN], B1 ... BN)

 L[object] = object

❑ For example:

O = object

class F(O): pass

class E(O): pass

class D(O): pass

class C(D,F): pass

class B(D,E): pass

class A(B,C): pass

L[O] = O

L[D] = D O

L[E] = E O

L[F] = F O

L[B] = B + merge(DO, EO, DE)

 = B + D + merge(O,EO,E)

 = B + D + E + merge(O,O)

 = B D E O

L[C] = C + merge(DO,FO,DF)

 = C + D + merge(O,FO,F)

 = C + D + F + merge(O,O)

 = C D F O

L[A] = A + merge(BDEO,CDFO,BC)

 = A + B + merge(DEO,CDFO,C)

 = A + B + C + merge(DEO,DFO)

 = A + B + C + D + merge(EO,FO)

 = A + B + C + D + E + merge(O,FO)

 = A + B + C + D + E + F + merge(O,O)

 = A B C D E F O

❑ The “Diamond problem”:

O = object

class A(O): pass

class B(O): pass

class C(A,B): pass

L[A] = A O

L[B] = B O

L[C] = C + merge(AO, BO, AB)

 = C + A + merge(O, BO, B)

 = C + A + B + merge(O,O)

 = C A B O

❑ With multiple inheritance, super() should not see as a function call to the next

“up” in the inheritance chain

• When properly used, super() will ensure that all functions in the MRO are

called in that order

class A(object):

 def __init__(self):

 super().__init__()

 print('A')

class B(A):

 def __init__(self):

 super().__init__()

 print('B')

class C(object):

 def __init__(self):

 super().__init__()

 print('C')

class D(B, C):

 def __init__(self):

 super().__init__()

 print('D')

d = D() # C A B D

