
Objects composition

❑ There are usually two main methods for reusing an already existent code: object

composition and class inheritance.

❑ In the object composition case, an object belonging to a certain compound class

contains one or more objects belonging to other classes. In this case the relation used

between classes is a membership relation.

❑ In the case of class inheritance the inheritance relation is in fact a refining relation: a

derived class inherits a base class, and it adds to the base class some more specific

information.

A. Defining compound classes and using composite objects

❑ The composition is a kind of a more general relation - class association, where

objects of the compound class must manage the life cycle of their component

objects, like object creation and their destruction.

❑ In the UML language the composition relation is graphical represented as:

Where the diamond is related to the compound class.

Example:

class A;

class B;

class X {

 A *a;

 B *b;

 // ...

};

X

A B

❑ The objects that are data members in a compound class can be private (or protected)

or public members.

❑ The object components from a compound class are, usually, private (or protected),

because in the compound class is used the functionality of the component classes,

and not their interfaces.

❑ When the objects members of a compound class are public members they can be

direct referred by the selection operator:
class A {

public:

 int n;

 A();

 // ...

};

class B {

public:

 double z;

 void f();

 B();

 // ...

};

class X {

 char c;

public:

 A a;

 B b;

 X();

 // ...

};

void Processing ()

{

 X x;

 x.a.n = 3;

 x.b.z = 4.5;

 x.b.f();

};

❑ When the component objects are private members into a compound class these

members cannot be direct accessed by using the selection operator. Moreover, the

compound class must contain its own functions for accessing the members of the

component objects.

Example:

class A {

 int n;

public:

 int N() const

{ return n; }

 void g() {

 cout << ”g function in

 class A” << endl;

 }

 A(int k = 0) { n = k; }

 // ...

};

class B {

 double z;

public:

 double Z() const

{ return z; }

 void f() {

 cout << ”f function in

class B” << endl;

 }

 void g() {

 cout << ”g function in

class B” << endl;

 }

 B(double k = 0) { z = k;

}

 // ...

};

class X {

 char c;

 A a;

 B b;

public:

 void f() { b.f(); }

 void ga() { a.g(); }

 void gb() { b.g(); }

 X();

 // ...

};

void Processing () {

 X x;

 x.f();

 x.ga();

 x.gb();

 // ...

}

❑ Object composition in Python is similar to the same relation of C++

• It represents a “Has-a” relation

❑ However, there is a subtle difference, because of object reference mechanism used in

Python:

• Python classes can easily manage both composition and aggregation relations

❑ A simple example of composition, where an instance of a class is created inside the

constructor of another class:

class A:

 def __init__(self, x_):

 self.x = x_

class B:

 def __init__(self, x_):

 self.a = A(x_)

❑ A simple example of aggregation, where the constructor of a class receives an

instance (already created) of another class:

class A:

 def __init__(self, x_):

 self.x = x_

class B:

 def __init__(self, a_):

 self.a = a_

a = A(7)

b = B(a)

❑ Because Python functions can collect arbitrarily many positional arguments using the

*varargs syntax, a constructor can use this property for constructing a list of

arbitrary objects already created (a particular case of aggregation of object into an

container)

class A:

 def __init__(self, x_):

 self.x = x_

class B:

 def __init__(self, y_):

 self.y = y_

class Container:

 def __init__(self, *args):

 self.members = list(args)

 def addElem(self, elem):

 self.members.append(elem)

a = A(5)

b = B(7)

c = Container(a, b)

a1 = A(9)

c.addElem(a1)

❑ Object composition is one of the two variants used in OOP paradigm that allows

code reuse

• One can use already defined classes for extending their functionalities

❑ Example:

class Aditive:

 def __init__(self, x_, y_):

 self.x = x_

 self.y = y_

 def add(self):

 return self.x + self.y

 def sub(self):

 return self.x - self.y

class Multiplicative:

 def __init__(self, x_, y_):

 self.x = x_

 self.y = y_

 def mul(self):

 return self.x * self.y

 def div(self):

 return self.x / self.y

class Algebraic:

 def __init__(self, x_, y_):

 self.x = x_

 self.y = y_

 self.m1 = Aditive(x_, y_)

 self.m2 = Multiplicative (x_, y_)

 def pow(self):

 return self.x ** self.y

 def add(self):

 return self.m1.add()

 def sub(self):

 return self.m1.sub()

 def mul(self):

 return self.m2.mul()

 def div(self):

 return self.m2.div()

 alg = Algebraic(3,2)

 r1 = alg.add() # >>> 3

 r2 = alg.sub() # >>> 1

 r3 = alg.mul() # >>> 9

 r4 = alg.pow() # >>> 9

B. Creation and destruction of composite objects. The

constructor initializer list

❑ If a class contains objects of other classes as data members, the constructors and the

destructor of the compound class must manages the calling of the appropriate

constructors and the destructors of the component classes, in order to:

• Initialize the sub-object of the composite object,

• Destroy these sub-objects respectively.

❑ The C++ language allows a proper initialization of the sub-objects of a composite

object by using a constructor initializer list. A constructor initializer list is specified

between the header of the constructor and its body.

❑ Each element from the constructor initialization list is associated to a class member

and it is specified by its member name and arguments that will be passed to its

constructor.

❑ For example, for the class X from the previous example, the class constructor can be

described as:
X::X(): a(5), b(5.3), c(‘x’)

{

 cout << ”constructor of the class X”;

}

❑ For every element from the constructor initializer list, it is called a constructor of the

class that the respective sub-object belongs to.

❑ In the constructor initializer list can appear, by extension, elements for those

members which belong to a predefined data type. This extension allows a consistent

syntax, which treats an initializer variable having a predefined type as a pseudo-

constructor.

❑ The pseudo-constructor notion is used in the C++ language also for initialization of

variables belonging to a predefined type outside a certain class, as in the following

sequence:

int n(3);

int* p = new int(7);

❑ A good programming style imposes as the constructor initialization list to have the

number of elements equal to the number of data members of the compound class,

ensuring a safe initialization of the data members before the execution of the

statements from the body of the constructor function.

❑ There are cases when the explicit call of the constructors is not necessary in the

constructor initializer list. For example, if a sub-object has a default constructor, or a

constructor with default values for parameters, and it is desired its call (and not the

call of another constructor), the corresponding initializer element from the

initialization list can be omitted.

❑ The order of calling the constructors for the initialization of the members of a

composite object is not necessary the order in which the members appear in the

constructor initializer list. The (pseudo-)constructors are called always in the order

in which the members appear in the class declaration.

❑ The order of calling of destructors is always reverse of the order of calling of

constructors:

1) The destructors for sub-objects are called after the destructor call of the

composite object. If a sub-object is also composed from other objects, this process

is recursively performed.

2) The destructors of the sub-objects are called in the reverse order of the

declaration of these sub-objects in the compound class.

Example:

#include <iostream>

using namespace std;

class A1 {

 int p;

public:

 A1(int k = 0) {

 p = k;

 cout << ”A1 class constructor” << endl;

 }

 ~A1() {cout<<”A1 class destructor”<<endl;}

};

class A2 {

 int q;

public:

 A2(int k = 0) {

 q = k;

 cout << ”A2 class constructor” << endl;

 }

 ~A2() {cout<<”A2 class destructor”<<endl;}

 };

class A {

 A1 a1;

 A2 a2;

public:

 A(int i = 0, int j = 0): a1(i), a2(j) {

 cout << ”A class constructor” << endl;

 }

 ~A() {cout<<”A class destructor”<<endl;}

 };

class B {

 double z;

public:

 B(double k = 0) {

 z = k;

 cout<< ”B class constructor” << endl;

 }

 ~B() {cout<<”B class destructor”<<endl;}

 };

class X {

 A a;

 B b;

public:

 X(int i=0, int j=0, double k=0): a(i, j), b(k)

 {

 cout << ”X class constructor” << endl;

 }

 ~X() {cout<<”X class destructor”<<endl;}

 };

int main() {

 cout << ”main function starts” << endl;

 {

 X x(7,9,3.33);

 cout << ”x object was created” << endl;

 }

 cout << ”main function ends” << endl;

 return 0;

}

The program output is the following:

main function starts

A1 class constructor

A2 class constructor

A class constructor

B class constructor

X class constructor

x object was created

X class destructor

B class destructor

A class destructor

A2 class destructor

A1 class destructor

main function ends

❑ Class constructors in Python do not have initializer lists

