
Constructors and destructors 
 

 

 

❑ The creation and the destruction of the objects represent an important 

operation in order to realize for safety and stable programs. 

 

❑ The standard C++ language uses the Stroustrup solution:  

o Constructors are named by the class name where they belong, 

o Destructors are named by the class name preceded by the character ‘~’. 

 

❑ Another particularity of C++: if a class does not contain in its declaration 

constructors and/or destructors, some of these functions are automate 

generated by the compiler. 

 

❑ Constructors and destructors do not return values, not even of the void type, 

which made them special functions by comparing with the others functions. 

 



A. Constructors 
 

 

❑ The creation of an object has two distinct parts: 

• Allocation by the compiler of an uninitialized memory block having an 

appropriate size (operation transparent to the programmer), 

• Calling of a constructor of the respective class. 

Example. The class time allows the determination of a time interval passed 

from an initial date of the form hour-minute-second, to the current date, 

considering the time measured in seconds. 

class time { 

  int hour, minute, second; 

  double t; 

  static int hour_0, minute_0, second_0; 

  void SetTime() { 

    t = 3600 * (hour - hour_0) +  

60 * (minute - minute_0) + second - second_0; 

  } 

public: 



  time (int Hour=0, int Minute=0, int Second=0) { 

    hour = Hour; 

    minute = Minute; 

    second = Second; 

  } 

  double GetTime() { 

    SetTime(); 

    return t; 

  } 

}; 

// ... 

int time::hour_0 = 0; 

int time::minute_0 = 0; 

int time::second_0 = 0; 

void Problem() { 

  time m1(7, 3, 24); 

  time m2(20, 4, 12); 

  cout << ”t1= “ << m1.GetTimp() << endl; 

  cout << ”t2= “ << m2.GetTimp() << endl; 

} 

  



❑ In this example there are two implicit calls of the constructor of the class time. 

The compiler inserted in the place of the two definitions a sequence similar to: 

m1.time(7, 3, 24); 

m2.time(20, 4, 12); 

 

❑ The role of a constructor is to initialize certain data members of the object.  

• To perform this action, the memory address of allocated zone for the object 

is passed to the constructor by using the hidden parameter this (in fact 

there are 4 parameters passed to the constructor): 

  m1.time(&m1, 7, 3, 24); 

 m2.time(&m2, 20, 4, 12); 

 

❑ The moment when constructors and destructors are called depends on the type 

of the memory allocation, and on the places on the program where objects are 

defined: 

a) for allocation in the static data zone: 

• for the external objects defined outside any function of a program (the life 

cycle of the object is the same as the life cycle of the program): 



▪ the constructor is called before the execution of the function main, 

▪ the destructor is called after the finish of the function main; 

• for static local objects: 

▪ the constructor is called at the first declaration of the object, 

▪ the destructor is called after the finish of the function main; 

b) for allocation in the stack zone of the program, in the case of local 

objects defined inside the blocks (the life cycle of such an object represents 

the time when the block is active on the stack): 

▪ the constructor is called when the program execution reaches the 

respective object definition, 

▪ the destructor is called after leaving the current block; 

c) for allocation in the heap zone of the program, in the case of dynamic 

objects, created by using the new operator, and deleted by using the 

delete operator (the lifetime of such an object corresponds to the time 

between the consecutive call of the pair operators new and delete, 

related to the same pointer): 

▪ the constructor is called when the operator new is called, 

▪ the destructor called when the operator delete is called. 



❑ In the first two cases the constructors and destructors are automatically called 

by the compiler, while in the last case they are implicitly called with the help 

of operators new and delete. 

❑ Types of constructors: 

• general constructors, 

• default constructors, 

• copy constructors, 

• conversion constructors. 

❑ Usually a class may have more than one different constructor, which allows 

the creation the state of objects. 

 



General constructors 

 

❑ Are constructors that have at least one argument, which is not a reference at 

the respective class type (the argument values are used for initialization of the 

data members of the created object) 

❑ Denoting with X the current class name and with T1, T2, …, etc., the data types 

of the arguments, the declaration of general constructor has the following form: 

X(T1, T2, /*...*/); 

❑ These constructors can have parameters with default values. In this case the 

default values must be specified in the class definition and not in the 

implementation part. 

❑ The constructor of the class time is an example of parameter with implicit 

values for parameters. The next definition creates three objects of time type: 

time o1(7, 3, 2); 

time o2(7, 3); 

time o3; 



Default constructors 

 

❑ Default constructors do not have arguments, having the following form:  

X(void); 

Example: 

class time { 

  // ... 

public: 

  time(); 

  // ... 

}; 

time::time() { 

  cout << ”Fill in with values for hour, minute, second: “; 

  cin >> hour >> min >> sec; 

} 

void processing() { 

  // ...  

  time t; 

  // ...  

} 



❑ Default constructors are the only constructors that can be automatically 

generated by the compiler in the case when a class does not have any 

constructor 

 

Remarks: 

1. The class constructors can be overloaded. 

2. A general constructor with all arguments having default values it is not an 

implicit constructor. 

3. The compiler does not generate a default constructor for a class that has at 

least one other constructor. 

 

❑ Because a default constructor and a general one with default values for all 

parameters are called with the same syntax, they do not have to be defined 

together in the same class.  

 



Example. The next sequence contains an error related to the definition of the 

constructors: 

class time { 

   // ... 

public: 

  time(int h = 0, int m = 0, int s = 0); 

  time(); 

  // ... 

}; 

because the next definition is not clear: 

 time t; 

 

❑ A special attention is imposed for the classes having no constructors (not even 

one), because the default generated constructor by the compiler do not perform 

any member initialization. 

 



Example. The next sequence has an error, because the s data member is not 

initialized at the creation of the String class objects. 

 
#define MaxString 100 

class String { 

  char s[MaxString + 1]; 

public: 

  void set(const char str[]); 

  const char* get() { return s; } 

}; 

// ... 

int main() { 

  String s1; // ‘s’ it is not initialized 

  // memory access error!! 

  cout << s1.get() << endl;  

  // ... 

} 

 



A correct variant of the precedent sequence is writing a default constructor, 

which creates an empty string: 

#define MaxString 100 

class String { 

  char s[MaxString + 1]; 

public: 

  String() { s[0] = ‘\0’; } 

  void set(const char str[]); 

  const char* get(); 

}; 

 

❑ Another used utilization of the default constructors refers the initialization of 

the array of objects. If the array is not explicit initialized, for each component 

of the array the default constructor of the respective class is automatic called 

by the compiler. 

 



Example. The next program: 

#include <iostream> 

using namespace std; 

unsigned int n = 0; 

class A { 

public: 

  A() { cout << ”Constructor for A object” << ++n << endl; 

  } 

}; 

A v[7]; 

int main() { return 0; } 

generates the following output: 

Constructor for A1 object 

Constructor for A2 object 

Constructor for A3 object 

Constructor for A4 object 

Constructor for A5 object 

Constructor for A6 object 

Constructor for A7 object 



 

Copy-constructors 

 

❑ An object can be initialized with the values of anoter created object. 

Example. Adding a copy-constructor to the class time: 

class time { 

  // ... 

public: 

  time(const time& t) { 

    hour = t.hour; 

    min = t.min; 

    sec = t.sec; 

  } 

  // ... 

}; 

  

time t(1, 0, 0), t1 = t; 

 

 

 



Remarks: 

1. Always, the first argument of a copy-constructor must be a reference to an 

object of the current class, or a reference to a constant object of the current 

class. 

2. If a copy-constructor has in addition other parameters, all these parameters 

must have default values; otherwise we have a general constructor. This 

restriction is due to the syntax of the call of a copy-constructor: 

class object1 = object2 ; 

Example. 

class X { 

  // ... 

  int a; 

public: 

  X(){ a = 0; } 

  X(X& x, int k = 0) { 

    a = x.a; 

    // ... 

  } 

  // ... 

}; 



// ... 

X x1; 

X x2 = x1; 

X x3(x2, 5); 

In the case of the following definition: 

X(X& x, int k); 

the above constructor is no longer a copy-constructor, and the following 

expression is incorrect: 

X x2 = x1; 

❑ In the case when into a class declaration it is not specified any copy-

constructor, the compiler will automatically generate such a constructor (not 

as default constructors).  

o A copy-constructor generated by a compiler, usually, will do a member by 

member copy of the data members of the object. 

❑ There are cases when a copy-constructor, implicitly generated by the compiler 

it is not sufficient for a correct initializing of the current object, especially in 

the cases when the member data are pointers, or objects of other classes. 

 



Example: The class list implements a simple single linked list, and the class node 

implements the structure of the elements of the list. 

struct node { 

  int val; 

  node* next; 

  node() {val = 0; next = 0;} 

  node(int v, node* n = 0) {val = v; next = n; } 

  // copy-constructor implicitly generated 

  ~node(){ next = 0; } 

  // adds a node after the current node  

  void Add (int);  

  void Print() const { cout << val << endl; } 

  // ... 

}; 

struct list { 

  node* first; 

  void Copy(list& l); 

  void Delete(); 

  list() { first = 0; } 

  list(list&); 

  ~list(); 



  list& operator=(list&); 

  node* Last() const; 

  // adds an element at the end of the list 

  void Add(int);  

  void Print() const; 

  // ... 

}; 

void node::Add(int k) { 

  node* p = new node(k); 

  next = p; 

}; 

void list::Copy (list& l) {  

  node* p = new node(l.first->val); 

  first = p; 

  for (node*q=p->next; p; p=p->next) 

    Last()->Add(q->val); 

} 

node* list::Last() const { 

  node* p; 

  for(p=first; p->next; p=p->next); 

  return p; 

} 



void list::Add(int k) { 

  if (first) 

    Last()->Add(k); 

  else { 

    node *p = new node(k); 

    first = p; 

  } 

} 

void list::Print() const { 

  for (node* p=first; p; p=p->next) 

    p->Print(); 

} 

void list::Delete() { 

  // will be further implemented (to destructors) 

} 

list::list(list& l) { 

  Copy (l); 

} 

list::~list() { 

  Delete(); 

  first = 0; 

} 



list& list::operator=(list& l) { 

  if(&l != this) { 

    Delete(); 

    Copy(l); 

  }    

  return *this; 

} 

// ... 

 



❑ A copy-constructor is not called only at object initialization with values of 

other objects, but also in the case of parameter passing mechanism when 

calling functions. 

• In the case of passing-by-value, a temporary copy of the object which is 

actual parameter is created, which is then passed to the corresponding 

formal parameter in the called function. 

• When the called function returns to the calling function by using the 

return statement, the value that represents the returned object is passed 

back to the calling function by returning a copy of that object. 

Example: A function which creates a new list formed from the first and the last 

element of an existent list. 

list FirstLast (list l) { 

  list l1; 

  l1.Add(l.first->val); 

  l1.Add(l.Last()->val); 

  return l1; 

} 



void Processing() { 

  list l1, l2; 

  l1.Add(3); 

  l1.Add(7); 

  l2 = FirstLast(l1); 

  // ... 

} 

• When the function FirstLast is called, the copy-constructor for the l parameter 

is called, which has as parameter a reference of the l2 object. This temporary 

object will be destroyed after the exit from the FirstLast function. 

• The statement return has the following effect: the automatic creation of an 

additional object of the type list by copying the object l1. This new created 

object represents the object which will be returned to the Processing function 

and which is taken by the assignment operator. 



Conversion constructors 

 

 

❑ A conversion constructor is usually a constructor with only one argument (as 

the copy-constructor), but its type is different to the current class. In the case 

when exists more parameters, these parameters must be all with default 

values. 

❑ A constructor is considered as general, either it has all parameters with default 

values, or it has at least two parameters with no default values. 

❑ The conversion constructors are frequently used by the compiler for doing the 

default conversion of data types. 

 

Example. A conversion constructor for the class String: 

#include <string> 

#include <iostream> 

using namespace std; 

#define MaxString 100 

 



class String { 

  char s[MaxString + 1]; 

public: 

  String() { s[0] = '\0'; } 

  String(const char str[])  

{ strcpy(s, str); } 

  void set(const char str[]); 

  const char* get() { return s; } 

}; 

// ... 

void f(String s) { cout<<s.get()<<endl; } 

int main() { 

  String s1; 

  f(s1);  // copy constructor 

  f("abc"); // conversion constructor 

  // ... 

} 

 



❑ In Python, the special function __init__ can be overloaded for each class 

• It has the same meaning as a constructor from C++ 

• There is a single __init__ function for each class 

• If a class does not contain a __init__ function, it is inherited from the 

root object class 

• The goal of the __init__ function is to initialize the instance variables 

• The first parameter related to the instance reference (ususally self) is 

mandatory 

 



B. Destructors 
 

 

❑ The destructors are used to free the additional memory zones occupied by the 

members of certain objects, before freeing the memory for the respective 

object. As in case of constructors, the de-allocation of the memory of an object 

does not represent an action of the destructor. 

❑ The destructor is used usually in the case when objects use dynamic allocation 

for certain data members of them.  

❑ In the case when a class does not contain an explicit definition of a destructor, 

the compiler will implicitly generate a destructor for it. 

❑ The destructors, unlike constructors: 

• cannot have arguments; 

• in addition, the destructors cannot be overloaded; each class must have 

exactly one destructor. 

 



Example: 

#include <iostream> 

using namespace std; 

class X { 

  int k; 

public: 

  X(int i) { 

    k = i; 

    cout << ”x() for ” << k << endl; 

  } 

  ~X() { cout << ”~x() for “ << k << endl; } 

}; 

 

X ob1(5); 

 

void f() { 

  cout << ”starts the function f” << endl; 

  static X ob2(7); 

  X ob3(9); 

  Cout << ”finishes the function f” << endl; 

} 

 



int main() { 

  cout << ”starts the main function” << endl; 

  X ob4(11); 

  f(); 

  cout << ”finishes the main function” << endl; 

  return 0; 

} 

The program execution generates the following output: 

x() for 5 

starts the main function  

x() for 11 

starts the function f  

x() for 7 

x() for 9 

finishes the function f 

~x() for 9 

finishes the main function 

~x() for 11 

~x() for 7 

~x() for 5 



❑ In the case when there are several elements to be destroyed, the destructors are 

called in reverse order as for constructors. 

❑ In the next example one can observe the call of constructors and destructors 

in the case of pass-by-value of the objects as arguments in the function call. 

Example: A class which counters its object instances. 

#include <iostream> 

using namespace std; 

class Contor { 

  char c; 

  static int contor; 

public: 

  void Print() {  

 cout << "object " << c << " contor " << contor << endl; 

  } 

  Contor(const char& ch) { 

    c = ch; 

    ++contor; 

    cout << "Conversion constructor: "; 

    Print(); 

  } 



  Contor(const Contor& h) { 

    c = h.c; 

    ++contor; 

    cout << "Copy-constructor: "; 

    Print(); 

  } 

  ~Contor() { 

    --contor; 

    cout << "Destructor: "; 

    Print(); 

  } 

}; 

int Contor::contor = 0; 

Contor f(Contor x) { 

  cout << "Starts the f function” << endl; 

  cout << "Finishes the f function" << endl; 

  return x; 

 } 

int main() { 

  Contor o1('a'); 

  cout << "Before f with return value" << endl; 

  Contor o2 = f(o1); 



  cout << "After f" << endl; 

  cout << "Before f without return value" << endl; 

  f(o1); 

  cout << "After f without return value" << endl; 

  return 0; 

} 

 

Program output: 

Conversion constructor: contor 1 object 

Before f call with return value 

Copy-constructor: contor 2 object 

f function starts 

f function finishes 

Copy-constructor: contor 3 object 

Destructor: contor 2 object 

After f with return value 

Before f without return value 

Copy-constructor: contor 3 object 

f function starts 

f function finishes 

Copy-constructor : contor 4 object 

Destructor : contor 3 object 



Destructor : contor 2 object 

After f without return value 

Destructor : contor 1 object 

Destructor : contor 0 object  

 

Remarks: 

1. The initialization of the parameter of the function f is made by the copy-

constructor. The parameter x becomes a temporary object which is local into 

the function f, and it will be destroyed when f finishes and it returns to the 

function main. 

2. When the expression from the statement return is evaluated, the second 

temporary object is generated by using also the copy-constructor. 

3. In the case when the function returns a value, this object is not destroyed, 

because it represents the value of the variable o2 from the function main. 

4. In the case when the function does not return a value, this object is destroyed 

after the finishing of the function f, and before the returning to the function 

main (at the second call of f, two destructors acre successively called, one for 

the temporary object, and another for the returned value). 



 

❑ In the case of using pointers, the constructors and destructors must be 

explicitly called with the help of new and delete operators. 

Remarks: 

1.Even if a pointer exits from his scope, if the delete operator is not called, 

the associated object to the pointer will not be destroyed (the destructor is not 

called by default). 

2.If at the end of the program execution there are objects allocated in the heap 

zone, the compiler forces the destructor call for these objects after the exit 

from the main function. 

Example: The destructor for list class from the previous example: 

struct list { 

  node* first; 

  void Copy (list& l); 

  void Delete(); 

  list() { first = 0; } 

  list(list&); 

  ~list(); 



  // ... 

}; 

void list::Delete() { 

  for(node* p=first; p ;) { 

    node*q = p->next; 

    delete p; 

    p = q; 

  } 

} 

list::~list() { 

  Delete(); 

  first = 0; 

} 

void Processing() { 

  list* l1 = new list; 

  l1->Add(3); 

  l1->Add(7); 

  l1->Print() ; 

  // ... 

  delete l1; 

  // ... 

} 



❑ In Python, destructors are needed much less than in C++ 

• Python has a garbage collector that handles memory management 

❑ However, memory is not the only resource used by class instances: 

• There are also sockets, database connections, files, buffers, etc.  

• These resources need to be released when an object is destructed 

❑ In Python, the special function __del__ can be overloaded for each class 

• It has the same meaning as a destructor from C++ 

• There is a single __del__ function for each class 

• If a class does not contain a __del__ function, it is inherited from the root 

object class 

• The goal of the __del__ function is to release resources used by an object 

(other than memory allocation) 

• The function __del__ is called when the counter of the references to an 

object becomes zero 

 



❑ A simple example: 

class C(object): 

   def __init__(self, x_): 

      self.x = x_ 

      print (self.x, 'born') 

   def __del__(self): 

      print (self.x, 'died') 

ob = C(5) 

prints: 

5 born 

5 died 

❑ However, there is a problem with the garbage-collector, called circular 

references: 

• Python does not know the order in which to destroy objects that hold 

circular references to each other 

• As a consequence, it does not call the destructors for such methods 

 

 

 



 

❑ An example of circular references: 

class A: 

   def __init__(self, x_, b_): 

      self.x = x_ 

      self.b = b_ 

      print('A', self.x, 'born') 

   def __del__(self): 

      print ('A', self.x, 'died') 

class B: 

   def __init__(self, y_): 

      self.y = y_ 

      self.a = A(y_, self) 

      print('B', self.y, 'born') 

   def __del__(self): 

      print('B', self.y, 'died') 

ob = B(5) 

prints: 

A 5 born 

B 5 born 



❑ Between the objects of the classes A and B there are circular references  

• Destructors __del__ are not called 

❑ Python provides the weakref module that can solve this problem: week 

references 

❑ From the weakref documentation: 

• A weak reference to an object is not enough to keep the object alive: 

▪ when the only remaining references to a referent are weak references 

• garbage collection is free to destroy the referent and reuse its 

memory for something else 

❑ The previous example written using week references: 



   import weakref 

class A: 

   def __init__(self, x_, b_): 

      self.x = x_ 

      self.b = weakref.ref(b_) 

      print('A', self.x, 'born') 

   def __del__(self): 

      print ('A', self.x, 'died') 

class B: 

   def __init__(self, y_): 

      self.y = y_ 

      self.a = A(y_, self) 

      print('B', self.y, 'born') 

   def __del__(self): 

      print('B', self.y, 'died') 

ob = B(5) 

The above sequence will print: 

A 5 born 

B 5 born 

B 5 died 

A 5 died 



 

❑ Some examples related to the reference counter: 

class C: 

   pass 

a = C()   # Creates an object (refcount = 1) 

b = a    # Increases refcount on the object (2) 

c = [] 

c.append(b)   # Increases refcount on the object (3) 

del a        # Decrease refcount on the object (2) 

b = 7    # Decrease refcount on the object (1) 

c[0] = 5   # Decrease refcount on the object (0) 

# Object will be destroyed 

  



C. Modern features in C++ related to constructors and 

destructors 

 

 

C1. Non static data members initialization 

 

❑ Starting to C++11, non static data members of a class can be initialized inside 

of the class, as in the case of static const members 

❑ In this case, the constructors of the class can: 

o Inherit the initialized values, or 

o Override these values 

❑ Advantages: 

o Easier to write 

o Can perform a uniform initialization of objects 

o Are useful when a class has several constructors 

 

 



Example: 

 class X { 

  int min{5}; 

  int max{10}; 

 public: 

  X(int a, int b) : min(a), max(b) {} 

  X() {} 

  void print() const {cout << min << " " << max << endl;} 

 }; 

 int main() { 

  X x1, x2(4, 9); 

  x1.print();  // 5 10 

  x2.print();  // 4 9 

  return 0; 

 } 

 

 

 

  



C2. Move semantics and rvalue reference 

 

❑ In the traditional C++, a lvalue reference is bind to another lvalue: 

int n = 5;   // OK: initialzation 

int &m = n;  // OK: binding an lvalue reference 

// ERROR! An lvalue reference cannot be bound to a rvalue 

int &k = 10;    

❑ However, a const lvalue reference can be bound to a rvalue: 

const int &k = 10;  // OK 

❑ C++11 introduces rvalue references which bind only to rvalues: 

int&& v = 99;  // OK: v is a rvalue reference 

❑ If T is a type, T&& represents the rvalue references to the values of T 

  



❑ Example of two overladed functions: 

void print (int& n) { cout << n << endl; } 

void print (int&& n) { cout << n << endl; } 

int value () {  

 int tmp = 77; 

 return tmp; 

} 

int main() { 

 int i = 7; 

 f(i);    // 7: lvalue reference is called 

 f(value()); // 77: rvalue reference is called 

 return 0; 

} 

❑ However, the standard library contains a function, move(), which takes an 

lvalue and converts it into an rvalue: 

f(move(i)); // OK: rvalue reference is called 

 



❑ Remark. T&& represents in fact temporary objects that are permitted to be 

modified after they are initialized: 

o The rvalue reference allows bind a mutable reference to an rvalue, but not 

an lvalue 

▪ rvalue references can detect if a value is a temporary object or not 

❑ The above remark represents the main concept of move semantics 

❑ In the classical C++, in a program, a lot of deep object copies can be created 

when objects are passed by value 

o This degradation of performance can be avoided by using a rvalue 

reference  

❑ The main usage of rvalue references is to create move constructors and move 

assignment operators 

❑ A move constructor is similar to a copy constructor:  

o It takes an instance of an object as its argument and creates a new instance 

from original object.  



❑ However, the move constructor will avoid memory reallocation because it 

knows that a temporary object is provided: 

o  Instead of copy the fields of the original object, it will move them to the 

new instance 

o The rvalue references and move semantics allow to avoid unnecessary 

copies when working with temporary objects 

❑ Example: 

#include <iostream> 

#include <algorithm> 

#include <vector> 

class A { 

int len;  

   int* data; 

public: 

   A(int l) : len(l), data(new int[l]) { 

        cout << "A: length = " << len << endl; 

   } 

 

   



~A() { 

  cout << "~A(): length = " << len << endl; 

  if (data != nullptr) { 

cout << " Deleting resource\n"; 

     delete[] data;  

  } 

   } 

   // Copy constructor. 

   A(const A& o) : len(o.len), data(new int[o.len]) { 

  cout << "A(const A&): length = " << o.len << endl; 

  copy(o.data, o.data + len, data); 

   } 

   // Move constructor. 

   A(A&& o) : data(nullptr), len(0) { 

    cout << "A(A&&): length = " << o.len << endl; 

      data = o.data; 

      len = o.len; 

// Release the data pointer from the source object 

// the destructor does not free the memory multiple times 

      other.data = nullptr; 

other.len = 0; 

   } 

}; 



int main() { 

vector<A> v; 

   v.push_back(A(25)); // move constructor 

   A a(55);     // conversion constructor  

 A b = a;     // copy constructor 

   return 0; 

} 

❑ Since C++11, STL functions such as push_back() now define two 

overloaded versions: one that takes const T& for lvalue arguments as before, 

and a new one that takes a parameter of type T&& for rvalue arguments 

❑ The move constructor: 

o does not allocate any new resources  

o the content is moved not copied 

❑ The move constructor is much faster than a copy constructor because it does 

not allocate memory nor does it copy memory blocks 

❑ Remark: as a result of moving resources from the initial object to the new 

object, the initial object will disappear 

  



C3. Explicitly defaulted and deleted functions  

 

❑ In C++, the compiler automatically generates the default constructor, copy 

constructor, copy-assignment operator, and destructor for a user-defined class 

if they are not explicitly declared 

❑ However, not all these special functions are all time automaticaly generated: 

o If any constructor is explicitly declared, then no default constructor is 

automatically generated 

o If a move constructor or move-assignment operator is explicitly declared, 

then: 

▪ No copy constructor is automatically generated 

▪ No copy-assignment operator is automatically generated 

o If a copy constructor, copy-assignment operator, move constructor, move-

assignment operator, or destructor is explicitly declared, then: 

▪ No move constructor is automatically generated 

▪ No move-assignment operator is automatically generated 

o If a virtual destructor is explicitly declared, then no default destructor is 

automatically generated 



❑ As a consequence, if these special functions are not properly declared, objects 

from a class hierachy cannot be properly constructed 

❑ For example: 

o If a base class A does not have a public or protected default constructor, 

then a class B derived from A cannot automatically generate its own 

default constructor 

❑ In C++11, explicitly defaulted functions make the compiler to generate these 

special functions, even if the above rules are accomplished 

❑ The syntax for a defaulted special function has only the declarator of the 

function followed by the construction =default 

Example. 

class A {  

 int n; 

public:  

   A(int a): n(a) { 

    cout << "A: Conversion constructor\n";  

   }  



   // the compiler will create the default constructor   

   A() = default; 

 void print() { cout << "n = " << n << endl; }    

};  

class B {  

 int m; 

public:  

   B(int a): m(a) { 

    cout << "B: Conversion constructor\n";  

   }  

   // user-defined default constructor   

   B() {} 

 void print() { cout << "m = " << m << endl; }    

}; 

int main() {  

 // call the defaulted constructor  

 A* p = new A(); 

 p->print(); // n = 0 

 // call the conversion constructor  

 A a(1); 



 a.print();  // n = 1 

 // call the user-defined default constructor  

 B* q = new B(); 

 q->print(); // m = -84631749 

 // call the conversion constructor  

 B b(2); 

 b.print();  // m = 2    

return 0;  

} 

❑ Remark. In the case of non-user-defined default constructor, a special kind 

of initialization will take place, and for built-in types this will result in zero-

initialization 

❑ Except to the case when a virtual destructor is defined in a class (and a default 

destructor will be not created by the compiler), another case when a defaulted 

destructor is useful is related to the move semantics 

 

 



Example 

class X { 

public: 

 ~X() { /* do something */ } 

 // ... 

}; 

❑ The above class will loose its move operations, because the move constructor 

and the move asignment operator will not be generated by the compiler 

o The code will continue to compile, but will silently it will call copy 

operations instead of move operations 

❑ In order to not inhibit the generation of default move constructors and move 

asignment operators, a defaulted destructor can be used: 

class X { 

public: 

 ~X() = default 

 // ... 

}; 

 



❑ C++11 introduced another use of the operator delete:  

o To disable the usage of a function 

▪ This is done by appending the =delete; specifier to the end of the 

function declaration 

❑ Special functions, as well as as normal member functions and non-member 

functions can be deleted to prevent them from being defined or called 

❑ Deleting of special member functions provides a cleaner way of preventing 

the compiler to not generate these special member functions if not desired 

Example: 

class X { 

 int n;  

public:  

   A(int k): n(k) {}  

   // Delete (disable) the copy constructor  

   A(const A&) = delete;   

};   

 



int main() {  

   A a1(1);  // OK 

   // Error! The usage of the  

// copy constructor is disabled  

   A a2 = a1;   

   return 0;  

} 

❑ Remark. A deleted special member function is implicitly inline 

❑ Deleting of normal member function or non-member functions prevents 

problematic type promotions from causing an unintended function to be 

called 

❑ Remark. =delete is a function definition (it does not remove or hide the 

declaration) 

o As a consequence, deleted functions still participate in overload resolution 

any other function 

o Attempts to use a deleted function result is a compile time error 

 



Example. Deleted a overloaded function prevents its call through type 

promotion of int to double 

#include <cmath> 

#inclide <iostream> 

using namespace std; 

void f(int) =delete; 

void f(double x) {  

cout << sqrt(x) << endl;  

} 

int main() { 

 f(4);  // compiler error 

 f(4.0); // OK 

} 

❑ However, if we add the following code, the result is OK because of promotion 

from float to double: 

float x = 4.0; 

f(x);  // OK 



❑ To ensure that no promotion will be performed, one can define a template 

function that is deleted: 

#include <cmath> 

#inclide <iostream> 

using namespace std; 

template <typename T> 

void f(T) =delete; 

void f(double x) {  

cout << sqrt(x) << endl;  

} 

int main() { 

 int n = 4; 

 float x = 4.0; 

 double y = 4.0; 

 f(n);  // compiler error 

 f(x);  // compiler error 

 f(y);  // OK 

} 



C4. Overlapping and delegating constructors  

 

❑ Because a class can have several constructor, in many cases some constructors 

have overlapping functionality 

Example. 

class X { 

 int n, m, p; 

public: 

 X() { 

  n = m = 0;  // redundant actions 

p = 0; 

 } 

 X(int a) { 

  n = m = 0;  // redundant actions 

  p = 10; 

 } 

 // ... 

}; 



❑ A variant to reduce the redundant actions is to write a distinct initialization 

function and to call it in the constructors. 

class X { 

 int n, m, p; 

public: 

 void init() { 

  n = m = 0; 

 } 

 X() { 

  init(); 

p = 0; 

 } 

 X(int a) { 

  init(); 

  p = 10; 

 } 

 // ... 

}; 

 



 

❑ With the delegating constructors feature, common initializations can be 

concentared in one constructor named target constructor  

❑ Delegating constructors can call the target constructor to do the initialization 

Example: 

class X { 

 int n, m, p; 

public: 

 // target constructor 

  X() { 

   n = m = 0;   

p = 0; 

  } 

  // delegating constructor 

 X(int a) : X() { 

  p = 10; 

 } 

 // ... 

}; 



❑ A delegating constructor can also be used as the target constructor of one or 

more delegating constructors 

o This feature can be used to make programs more readable and maintainable 

class Complex { 

   int re, im; 

public: 

Complex() : Complex(0) {}    

   Complex (int x) : Complex (x, 0) {}  

   Complex (int x, int y) : re(x), im(y) {}    

};  

 

  



C5. constexpr constructors 

 

❑ Constructors can also be qualified as constexpr to indicate that object 

construction can be performed at compile time, provided that all arguments to 

constructor are constant expressions 

❑ In addition, constexpr constructors are implicitly inline 

❑ If an object of a class has to be constructed at compile time, its constructors 

have to be constexpr functions (and eventually its member functions) 

Example 

class Circle { 

 int x, y, r; 

  public: 

   constexpr Circle (int a, int b, int c) :  

x(a), y(b), r(c) {} 

   constexpr double getArea () { 

        return r * r * 3.1415926; 

   } 

}; 



int () { 

constexpr Circle c(0, 0, 10); 

constexpr double area = c.getArea(); 

cout << area << endl; 

return 0; 

} 

 


