
Defining and using classes

A program which uses object-oriented programming paradigm involves:

❑ to define the classes that it uses,

❑ to use these classes.

In C++, to define a class consists of:

❑ declaring the class,

❑ implementing this class.

Using classes in an object-oriented application involves:

❑ to create a set of objects that are instances of these classes,

❑ to communicate with the created objects by using messages.

The mechanism for sending and receiving the messages to/from objects is

represented by calling member functions.

A) Example in C++

//file “stack.h”

 class stack {

 int dim; //data member

 char *buff; //data member

 public:

 stack(int); //constructor

 ~stack(); //destructor

 void push(char); //function member

 char& pop(); //function member

 bool isEmpty(); //function member

 } ;

 //file “stack.cpp”

 #include “stack.h”

 stack::stack(int n) {

 //code for the constructor

 }

 stack::~stack(int n) {

 //code for the destructor

 }

 void stack::push(char c) {

 //code for the function push

 }

 char& stack::pop() {

 //code for function pop

 }

bool stack::isEmpty() {

 //code for function isEmpty

 }

 //file “main.cpp”

#include “stack.h”

 int main()

 {

 //declaring stack objects

 stack st1(100), st2(50);

 //using stack objects

 st1.push(‘a’);

 // ...

 }

B) Example in Python

module mystack.py

class MyStack:

 def __init__(self):

 self.items = []

 # the top of the stack is the last element

 def push(self, elem):

 self.items.append(elem)

 def pop(self):

 return self.items.pop()

 def empty(self) -> bool:

 return not self.items

module usemystack.py

from mystack import *

stack1 = MyStack()

stack1.push(2) #add only integers

stack1.push(3) #add only integers

x = stack1.pop() #a homogeneous container

print(x)

stack2 = MyStack()

stack2.push(‘a’) #add only strings

stack2.push(‘b’) #add only strings

y = stack2.pop() #a homogeneous container

print(x)

Remark.

1.In Python there is no difference between declaring and implementing a class.

2.The class statement is an executable statement that creates a class object and

assigns it a name.

3.Methods are functions that are defined inside classes, being attached to

classes and used to process instances of those classes.

A. Declaring classes

❑ In C++, the syntax for declaring a class is the following:

<class declaration> ::= <class header> [<member declaration>] ;

<class header> ::= <class specifier>

<class name>

[: <base class> {“,” < base class>}]

<member declaration> ::= “{“ {<specific member>} “}”

<class specifier> ::= struct | class

<base class> ::= [<class modifier access> :] <class name>

<specific member > ::= [<member modifier access> :]

< member declaration >

❑ The above definition is specified in a metalanguage called Backus-Nour form

notation (BNF), used to describe programming languages

❑ A definition in BNF consists in one ore more rules, each rule defining a

syntactic category, called non-terminal variable:

<non-terminal> ::= <expression>

❑ In the expression describing a non-terminal can be used the following elements:

Terminals (string of characters)

Meta-characters:

o [] – optional element

o () – parenthesis for grouping other elements

o {} – braces, for representing the repetition of zero or many times of

other elements

❑ The header of a class contains mandatory:

 the name of the class

 its specifier

o usually it is struct or class

o it may be union (in this case the class cannot be a base class, nor a

derived class).

❑ The declaration of a class can be incomplete, if its members are not declared.

❑ For example:

 struct ClA;

 struct ClB {

 // ...

 ClA *a;

 // ...

 } ;

 struct ClA {

 // ...

 ClB *b;

 // ...

 } ;

❑ The syntax for defining classes in Python:
class ClassName:

 <statement-1>

 . . .

 <statement-n>

❑ The statements inside a class definition will usually be function definitions, but

other statements are allowed.

• For example, an assignment statement can be used to define global or

shared (static in C++) immutable variable members:
class Experiment:

 n = 0 # shared variable n

 s = 0.0 # shared variable s

 list = [] # error, list is a mutable object

 def __init__(self, x):

 self.x = x # x is an instance variable

 Experiment.n = Experiment.n + 1

 Experiment.s = Experiment.s + x

 def med():

 return Experiment.s/Experiment.n

 def getn():

 return Experiment.n

❑ The declaration of a Python class may be incomplete by using the keyword

pass:

class Experiment:

 pass

❑ The reason for defining incomplete classes is totally different from C++: the

programmer is not interested in defining a certain class at a certain moment

❑ Recursive Python classes can be defined without using an incomplete

definition:

class A:

 def increment(self, n):

 if n > 10:

 return B().decrement(n)

 else:

 return n + 1

class B:

 def decrement(self, n):

 if n < 0:

 return A().increment(n)

 else:

 return n – 1

n = A().increment(7)

print(n)

❑ However, using recursive object members in classes is not possible. The

following definition represents an infinite recursion:

class A:

 def __init__(self, a):

 self.a = a

 self.b = B(a)

 def increment(self):

 return self.a + 1

 def decrement_b(self):

 return self.b.decrement()

class B:

 def __init__(self, a):

 self.a = A(a)

 self.b = a

 def decrement(self):

 return self.b - 1

 def increment_a(self):

 return self.a.increment()

❑ A class can be derived from one or more classes, which are called base classes

for the derived class.

❑ Base classes for a derived class must be specified by specifying their names

and their access types. The default access type for class is private, and for

struct the access type is public.

Example:

 class Triunghi : public Poligon {

 // ...

 double x2, y2;

 double Perimeter();

 double TwoEdges();

 // ...

 } ;

❑ The declaration of a class member can be preceded, optionally, by an access

modifier of the respective member (that is different from the access modifier

of a base class).

❑ The access modifier for a class member specifies the way in which the

respective member can be seen outside the class:

• a public member is visible outside and it can be accessed,

• a private member is inaccessible,

• a protected member can be accessed only in a class derived from the

respective class with the public access modifier.

❑ An access modifier affects the accessibility of all declared member after this in

the current class, until another access modifier is encountered.

❑ If the first declared member of class does not have specified an access

modifier, then, by default this is private for class and public for struct.

Example. The polygon class stores pointers to the polygon vertices (not the

vertex coordinates).

 struct point {

 double x, y;

 point double x0=0, double y0=0)

 { x = x0; y = y0; }

 } ;

 class polygon {

 //private members

 int nr_vertices;

 point **vertices;

 double area, perimeter;

 void ComputePerimeter();

 void AdjustArea();

 public :

 //public members

 polygon();

 ~polygon();

 int NrVertices() const { return nr_vertices; }

 void AddVertex (point*);

 point* operator[](int);

 double Area() const { return area; }

 double Perimeter() const { return perimeter; }

 } ;

❑ Public members of a class can be accessed by outside of the class and they

represent the interface of that class (the way the class communicates with the

exterior). The private members are local to the respective class.

❑ The scope of the members of a class is represented by the class definition.

❑ This allows defining members in different classes with the same name,

which represent different members.

❑ In Python (absolutely) private members of a class do not exists

❑ However, there are some conventions related to the access mode to class

members:

1.Using single leading underscore:

• represents a weak "internal use" indicator

• from <module> import * does not import objects whose name starts

with an underscore

• One leading underscore can be used (by convention) for non-public

methods and instance variables

2.Using double leading underscore:

• for a class attribute, it invokes a mechanism called name mangling:

▪ inside a class C: an attribute __x becomes _C__x

▪ such an attribute cannot be accessed by C.__x

▪ however, it can be accessed by calling C._C__x

• Double leading underscores should be used only to avoid name conflicts

with attributes in classes designed to be subclassed

❑ Remark: Python does not support strong encapsulation (it does not enforce

encapsulation, as C++ or Java), but it allows encapsulation by convention

• Question: is Python less object-oriented than C++ or Java?

• Hint: Smalltalk (considered as a pure O-O language) uses also a

convention for encapsulation (as Python, Smalltalk does not enforce

encapsulation)

• Hint: Data encapsulation is about using interfaces

• Martin Fowler says:

▪ There is really room for another access type: PublishedInterface

▪ There is a fundamental difference between features exposed to other

classes within a project team and those exposed to other teams

▪ The distinction between published and public is more important than

that between public and private

❑ In Python, the syntax for the inheritance relation is slightly different:

• A base class is called a superclass (while a derived class is called a

subclass)

• Superclasses are specified between parenthesis:

class C(A, B):

 pass

❑ Other difference: the inheritance is always public (in the sense of the C++

language)

Example. The same Polygon and Point classes:

module ‘polygon.py’

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 #overloaded __str__ function for printing

 def __str__(self):

 return "({0},{1})".format(self.x, self.y)

class Polygon:

 def __init__(self):

 self.dimension = 0

 self.area = 0.0

 self.perimeter = 0.0

 self.vertices = []

 def compute_area(self):

 pass

 def coppute_perimeter(self):

 pass

 def add_vertex(self, p):

 self.vertices.append(p)

 self.dimension = self.dimension + 1

 self.area = self.compute_area()

 self.perimeter = self.coppute_perimeter()

 # overloaded [] operator

 def __getitem__(self, item):

 return self.vertices[item]

module ‘usepolygon.py’

from polygon import *

p1 = Point(1, 0)

p2 = Point(2, 0)

p3 = Point(2, 1)

print(p1)

print(p2)

print(p3)

plg = Polygon()

plg.add_vertex(p1)

plg.add_vertex(p2)

plg.add_vertex(p3)

ar = plg.area

pr = plg.perimeter

print(ar, pr)

p = plg[1]

print(p)

❑ According to the new-style (available in 3.x), all classes are inherited (directly

or indirectly) from the root class of the Python class hierarchy, called
object

❑ For example:

class C:

 pass

is equivalent to:

class C(object):

 pass

❑ The reason for using object as the root of the Python class hierarchy:

• It contains important special functions (overloaded operators) that can be

inherited by user classes:

▪ __init__, __del__, __str__, etc.

Python metaclasses

❑ The term metaprogramming refers to the potential for a program to have

knowledge of or manipulate itself.

• Python supports a form of metaprogramming for classes called

metaclasses

❑ In Python, everything is an object. Classes are objects as well. As a result, a

class must have a type. The type of a class is type

❑ type is a metaclass. Any class in Python 3.x, is an instance of the type

metaclass

Example:

class A:

 pass

for t in int, float, list, A:

 print(type(t))

<class 'type'>

<class 'type'>

<class 'type'>

<class 'type'>

❑ The type of the type metaclass is also type

type(type)

<class 'type'>

❑ Instances of Python classes are created by using the corresponding metaclass

by using two methods of type:

• __new__() for creating the class

• __init__()for initializing the class

❑ Remark: __new__() and __init__() are also methods of the class
object

❑ When a class is created, the interpreter:

• Gets the name of the class

• Gets the base classes of the class

• Gets the metaclass of the class

• Gets the variables/attributes in the class and stores them as a dictionary

• Passes this information to metaclass as
metaclass(name_of_class, base_classes, attributes_dictionary)

and it returns a class object

❑ Another method of type is __class__(), which is used for creation of

object instances

❑ For the class
class A:

 pass

the creation of an object
a = A()

imply the following actions:

• Calling the method __call__() of the metaclass of A (in this case the

metaclass type)

• The __call__() method in turn invokes the following methods of the

parent of the class A (in this case the class object):

▪ __new__() for creating the object

▪ __init__()for initializing the object state

• If the class A does not define __new__() and __init__(), default

methods are inherited from A’s ancestry

❑ From the metaclass type can be derived custom metaclasses

❑ Th type metaclass is the root of all custom metaclasses, as the object class

is the root of all classes from a Python application

Example:

class Meta(type):

 def __new__(cls, name, bases, dct):

 x = super().__new__(cls, name, bases, dct)

 x.attr = 100

 return x

❑ In the above example, the metaclass Meta:

• Delegates via super() to the __new__() method of the parent

metaclass (type) to actually create a new class

• Assigns the custom attribute attr to the class, with a value of 100

• Returns the newly created class

❑ Meta can be used as a metaclass for a class:

class B (metaclass=Meta):

 pass

print(B.attr) # 100

❑ The member functions are usually only declared in a class declaration. But

some simple functions can be both declared and implemented inside the

declaration part of a class. These functions implemented inside the declaration

of a class represent inline functions.

❑ The objects of a class can be declared as constants, as other variables in a C

program. The C++ language allows for a constant object to call only constant

member functions of the class.

❑ A constant member function is specified in the class declaration with the

keyword const specified after the function header. Such a function must not

modify the member data values of the class from where it belongs.

Example. The circle class definition:

 class circle {

 double xc, yc;

 double r;

 public :

 circle(double a, double b, double c)

 { xc = a; yc = b; r = c; }

 double GetXc () const { return xc; }

 double GetYc () const { return yc; }

 double GetR() const { return r; }

 void Translate(double dx, double dy)

 { xc += dx; yc += dy; }

 };

Circle class utilization:

 Circle c1(0, 0, 10);

 const circle c2(8, 7, 5);

 c1.Translate(2, 3); // correct

 c2.Translate(2, 3); // incorrect

 double x = c2.GetXc (); // correct

❑ However, the mutable qualifier can be added to a member variable of a class.

In this case, this member can be modified even though the member is part of

an object declared as const.

 class circle {

 double xc, yc;

 mutable double r;

 public :

 circle(double a, double b, double c)

 { xc = a ; yc = b ; r = c ;}

 double GetXc () const { return xc; }

 double GetYc () const { return yc; }

 double GetR() const { return r; }

 void SetR(double a) { r = a; }

 void Translate(double dx, double dy)

 { xc += dx ; yc += dy; }

 };

const circle c3(0, 0, 2);

 c3.SetR(3); // correct

Remark. The above example is correct regarding the definition of mutable

keyword, but it is wrong regarding to its way of usability.

❑ There is a difference between semantic immutability and syntactic

immutability.

❑ The semantic immutability does not affect the externally visible state of the

object.

❑ The syntactic immutability does not affect the entire state of the object,

including non-visible values.

❑ The mutable keyword is used for semantic immutability, when some non-

visible members can be modified.

❑ In the previous example, for a constant circle object it does not make sense to

change its radius.

❑ However, there are cases in which some non-public member variables of a

constant object should be modified. For example, calculating and caching

values once, for a quick access.

Example.

 class polygon {

 //private members

 int nr_vertices;

 point **vertices;

 mutable double cachedPerimeter{0};

 void ComputePerimeter();

 public :

 //public members

 polygon();

 ~polygon();

 double Perimeter() const {

 auto perimeter = cachedPerimeter; // only once

 if (primeter == 0) {

 perimeter = ComputePerimeter();

 cachedPerimeter = perimeter;

 }

 return perimeter;

 }

 } ;

❑ In a similar way a C++ program can use volatile objects and volatile member

functions.

❑ For example, a class that controls a hardware device by placing appropriate

values in hardware registers at known absolute addresses.

// file devregs.h

struct devregs {

 // control-status-register

 unsigned short volatile csr;

 // data

 unsigned short const volatile data;

 // Busy-wait function to read a byte from device

 unsigned int read_dev() volatile;

 // constructor

 devregs() { csr = 0; data = 0; }

};

// file devregs.cpp

// bit patterns in the control-status-register

#define ERROR 0x1

#define READY 0x2

#define RESET 0x4

unsigned int devregs::read_dev() volatile {

 while ((csr & (READY | ERROR)) == 0)

 ; // NULL - wait till done

 if (csr & ERROR){

 csr = RESET;

 return 0xffff;

 }

 return data & 0xff;

}

// file main.cpp

#include devregs.h

void process(void) {

 volatile devregs dvp;

 unsigned int ret;

 ret = dvp->read_dev(); // OK

}

❑ In Python there are not constant and variable objects

❑ There are instead:

• Immutable objects (numerical objects, strings, and tuples)

• Mutable objects (lists, dictionaries, sets, and class instances)

❑ All objects in Python have three different features:

• A type (data type)

▪ The type can be determined by using the function type()

• An identity (typically the memory address of the object)

▪ The identity can be determined by using the function id()

• A value

❑ The value of an immutable object cannot be modified

❑ The value of a mutable object can be modified

❑ For example:

tp = (1, 2, 3)

print(tp) # (1, 2, 3)

print(id(tp)) # 24735289

tp += (5, 6)

print(tp) # (1, 2, 3, 5, 6)

print(id(tp)) # 38426517

x = 10

print(x) # 10

print(id(x)) # 53764251

x = 11

print(x) # 11

print(id(x)) # 34196577

l = [1, 2, 3]

print(l) # [1, 2, 3]

print(id(l)) # 64155936

l += [5, 6]

print(l) # [1, 2, 3, 5, 6]

print(id(l)) # 64155936

❑ A variant for creating a constant object (similar to C / C++) is to use an

immutable object:

• Not a numerical object

• But a tuple with a single component

❑ For example, a mutable point class can be defined as follows:

class MutPoint:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x, self.y)

 def change_point(self, dx, dy):

 self.x = dx

 self.y = dy

p1 = MutPoint(3,3)

p1.change_point(4, 5)

print(p1)

>>> (4, 5)

❑ An immutable point class can be defined as follows:

class ImutPoint:

 def __init__(self, x, y):

 self.x = (x,)

 self.y = (y,)

 def __str__(self):

 return "({0},{1})".format(self.x[0], self.y[0])

 def change_point(self, dx, dy):

 self.x[0] = dx

 self.y[0] = dy

p2 = ImutPoint(1,2)

print(p2) # >>> (1, 2)

p2.change_point(3, 4) # error

❑ A constant object of the class MutPoint can be created in a similar way:

p3 = (MutPoint(1,1),)

p3[0] = p1 # error

❑ However, the following sequence is correct:

p3[0].change_point(4) # OK

print(p3[0])

❑ Access functions represent a group of member functions very used in C++

programs. These are functions, usually defined as inline, which allow to read

or to modify the value of the private data members of the classes, where the

user does not have direct access.

❑ The functions reading values are usually called accessors, while the functions

writing values are called modifiers.

❑ There are not predefined rules for naming these functions, but usually the

accessors are prefixed by Get, while modifiers are prefixed by Set.

❑ For example, the functions GetXc, GetYc and GetR from the Circle class are

accessors. A modifier can be defines as::

 void SetXc(double x) { xc = x; }

❑ Another way used is that of writing overloaded functions, for accessors and

for modifiers. For example, for member data xc of Circle class, the following

access functions can be defined:

 void Xc(double x) { xc = x; }

 double Xc() const { return xc; }

Remark. It is not recommended that accessors to return references, nor not

constant pointers at the private data of the classes (in this case they allow the

direct access to the private data members).

❑ Because all members of a class are visible (public access), in Python there is

not necessary to write accessor and modifier functions (getters and setters)

❑ However, it is possible to make attributes of a class to be private by convention

using double leading underscore. In this case, one can write getters and setters

(not a Pythonic way!).

class PrivAttr:

 def __init__(self,x):

 self.__x = x

 def get_x(self):

 return self.__x

 def set_x(self, x):

 self.__x = x

p1 = PrivAttr(43)

k = p1.get_x()

print(k) # >>> 43

p1.set_x(44)

n = p1.get_x()

print(n) # >>> 44

❑ The Pythonic way to deal with the above problem is to use property

• a mechanism that provides another way for new-style classes to define

methods called automatically for access or assignment to instance attributes

❑ A property is a type of object assigned to a class attribute name

❑ A property can be generated by calling the property built-in function, passing

in up to three accessor methods: handlers for get, set, and delete operations

❑ Usually properties are related to one leading underscore attributes (that are by

convention non-public)

❑ Example of a class with property function:

class ProAttr:

 def __init__(self, x):

 self._x = x

 def get_x(self):

 return self._x

 def set_x(self, x):

 self._x = x

 x = property(get_x, set_x)

obj = ProAttr(7)

k = obj.x

print(k) # >>> 7

obj.x = 9

print(obj.x) # >>> 9

❑ A second example uses the property decorator

• A decorator is simply a function that takes another function as an argument

and adding to its behavior by wrapping it

• Syntactically it consists of the @ symbol, followed by a metafunction: a

function that manages another function.

class C:

 @my_decorator # Function decoration syntax

 def meth():

 pass

• Internally, this syntax has the following effect:

▪ passing the function through the decorator and assigning the result back

to the original name

meth = my_decorator(meth)

❑ The @property decorator (used as getter):

@property

def x(self):

 return self._x

Is equivalent to the following code:

def x(self):

 return self._x

x = property(x)

❑ Then, on can use the decorator @x.setter as a setter, which is equivalent to:

def x_setter(self, value):

 self._x = value

x = x.setter(x_setter)

❑ In conclusion, using the @property decorator, the previous class can be

written as follows

class ProDec:

 def __init__(self, x):

 self._x = x

 @property

 def x(self):

 return self._x

 @x.setter

 def x(self, value):

 self._x = value

obj1 = ProDec(5)

k = obj1.x

print(k) # >>> 5

obj1.x = 6

print(obj1.x) # >>> 6

B. Class implementation. The resolution operator

❑ For a complete class definition all member functions from the respective class

declarations that are not inline must be implemented.

• Usually the implementation of a non-inline function is made in a distinct

source file.

❑ The C++ language has a new operator called resolution operator (denoted ::),

in order to be able to specify in the case of every member function the class

where it belongs:

 <class name> :: < function name>

Example. For example, the function AddVertex from the polygon class can be

defined as follows:

 void polygon::AddVertex(point* p) {

 point **v = new point *[nr_vertices+1];

 for(int i=0 ; i< nr_vertices ; i++)

 v[i] = vertices[i];

 v[nr_vertices++] = p;

 delete[] vertices; //free memory for vertices

 vertices = v;

 Compute Perimeter();

 AdjustArea();

 }

❑ The resolution operator can be used in this case as a unary operator which

prefixes a name. In this case it refers the most outside appearance of the

respective name, declared at the file level.

❑ A usual utilization is the reference of a name which is hidden in a block.

❑ There is no resolution operator in Python because all methods are written

inside the class

Example: Using the unary form of the resolution operator:

 int k;

f1() {

 // k is visible in this block

 }

 f2() {

 // k defined at the file level

 // it is not visible in f2

 int k = 0;

 k = k+2; // using k at the block level

 ::k = ::k+2; // using k at the file level

 }

❑ The class constructors and destructors are member functions of the class.

❑ They are special functions that do not have any returned value (not even

void).

❑ Moreover, the destructors cannot have arguments.

Example:

 polygon::polygon() { // constructor

 vertices = 0;

 nr_vertices = 0;

 area = perimeter = 0;

 }

 polygon::~polygon() { // destructor

 delete[] vertices;

 }

❑ In Python, the special function __init__ is used as a constructor for a class

❑ Python uses references (as Java) and a garbage-collector mechanism

❑ However, the special function __del__ (from the object root class in most

cases) is called when an object is destroyed (the reference count become zero)

❑ This special function __del__ in Python is equivalent to a destructor in C++:

• This function can be overloaded for a user class, if necessary

❑ Another special category of member function are the operators. The C++

language allows overloading the common operators of the language in order

to be able to define other operations.

❑ The specification of an operator as a function is done with the help of the

keyword operator used as prefix of the respective operator.

Example. In the class polygon it is overloaded the indexing operator:

 point* polygon::operator[](int k) {

 if (k < 0) {

 cout << “\n Negativ index”;

 return 0;

 }

 return vertices[k];

 }

❑ In Python only special built-in functions can be overloaded

C. Using classes

❑ Using of a class means the creation of some objects of these classes and the

communication with the respective objects with the help of messages, that is

calling their member functions.

❑ The creation of an object involves two distinct operations, regardless of the

allocation zone:

• The allocation of a memory zone having an appropriate dimension;

• The call of a constructor function of the class where the object belongs to,

in order to initialize the member data with initial values.

❑ The dimension of the memory zone allocated for an instance object is, in

general, given by the sum of the dimensions of its data members, but this

dimension depends on the implementation.

❑ There are situations when the memory zone dimension of an object is greater

than this sum. For example:

• in the case of polymorphism,

• in the case of some classes which do not contain only member functions.

Example. For a Visual C++ compiler, the following sequence displays the values

4 and 1:

#include <iostream>

using namespace std;

struct A {

 int n;

 A(int k) { n = k; }

 int N() { return n; }

};

struct B {

 void Print() { cout << "B"; }

};

int main() {

 A a;

 B b;

 cout << sizeof(a) << endl;

 cout << sizeof(b) << endl;

 retrun 0;

}

❑ Although the memory zone for the member functions is different from the

memory zones of the object instances, the calling of an object member function

is strictly related with the memory zone of respective object, by passing of a

hidden parameter, which refers the memory address of its associated zone.

❑ Example. Defining a class p_poligon, which is be able to use more polygons

stored into a doubled linked list. At the polygon class must be added 2 new

members having the pointer type:

 class p_polygon {

 int nr_vertices;

 point **vertices;

 double area, perimeter;

 p_polygon *succ, *pred;

 void ComputePerimeter();

 void AdjustArea();

 public :

 p_polygon() {

 vertices = 0;

 nr_vertices = 0;

 area = perimeter = 0;

 succ = pred = nullptr;

 }

 ~p_polygon() ;

 int NrVertices() const { return nr_vertices; }

 void AddVertices (point*);

 point* operator[](int);

 double Area() const { return area; }

 double Perimeter() const { return perimeter; }

 p_polygon* Pred() const { return pred; }

 p_polygon* Succ() const { return succ; }

 void AddPolygon(p_polygon*);

 } ;

❑ The implementation of the functions of the class p_polygon is the same as in

the case of the class polygon, with the exception of the new added one. The

AddPolygon function adds a new polygon in the list, as successor of the

current polygon:

void p_polygon::AddPolygon(p_polygon* p) {

 p->succ = succ;

 p->pred = this;

 succ->pred = p;

 succ = p;

 }

❑ The keyword, this is called the self pointer and it points always on the current

object.

❑ In the case of a class X, the parameter
 X* this

is passed in all the non-static member functions of the X class.

❑ The using of the hidden parameter this is not absolutely necessary, only in the

case when an explicitly reference at the memory address of the current object

is made. For example, the function AddPolygon can be also written:

void p_poligon::AddPoligon(p_poligon* p) {

 p->succ = this->succ;

 p->pred = this;

 this->succ->pred = p;

 this->succ = p;

}

❑ In Python the parameter self is no hidden in methods; it is mandatory

❑ The same example as in C++

class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __str__(self):

 return "({0},{1})".format(self.x, self.y)

class LPolygon:

 def __init__(self):

 self.vertices = []

 self.area = 0.0

 self.perimeter = 0.0

 self.succ = None

 self.pred = None

 def compute_perimeter(self):

 pass

 def adjust_area(self):

 pass

 def nr_vertices(self):

 return len(vertices)

 def add_vertex(self, point):

 pass

 def __getitem__(self, item):

 pass

 def add_polygon(self, polygon):

 polygon.succ = self.succ

 polygon.pred = self

 self.succ.pred = polygon

 self.succ = polygon

D. Static members of a class

❑ Every object of a class has usually a copy of the member data of the class to

which it belongs. For this reason, any modification of the value of an object

member is local to the respective instance and it is not visible in other instances

of the same class.

❑ The C++ language allows, in addition, the possibility of defining members

having values that can be used in common by all other class instances. These

members are called static members and they are declared with by using the

keyword static.

Example. Let us consider a class Experiment, which allows the description of

the observations on a physic measure. Each class object stores a measured value

of the physic measure. The Experiment class must determine the observations

number at a certain time, and also the average of the observed values.

// experiment.h file

class Experiment {

 double x;

 static int n;

 static double s;

public:

 Experiment(double);

 double X() const { return x; }

 static double Med() { return s/n; }

 static int N() { return n; }

};

❑ Data members having static type are common for all class objects and they

have allocated a memory zone that is different from the zone of non-static data.

In this way it can be realized the simple and efficient communication between

different objects belonging to the same class.

❑ The effective definition (memory allocation and initialization with values) of

the static member data must be realized outside of the class declaration and in

a single place in the program.

❑ Usually the definition of the static member date is realized in the file

which contains the implementation of the class, avoiding in this way

multiple definitions.

❑ For the previous example, in the implementation file of the experiment class

must be added the following definitions:

// experiment.cpp file

int Experiment::n = 0;

double Experiment::s = 0;

Experiment::Experiment(double v) {

 x = v;

 n++;

 s += v;

}

❑ Static data members of a class can be const (static const)

❑ In this case, static const variables can be initialized inside of the

class declaration (they are still static):

class X {

 static const int m = 7;

 // …

}

❑ The using of static member data lead to a better structuring of information in a

program, because these values are global only for class objects where they have

been declared.

❑ Static functions cannot use the hidden parameter this. It follows that the

static member functions can have access only at the static members of the

respective class (data or functions). In the previous example, the Med function

cannot modify the x member value and it cannot call other member functions

of the class (X for example).

❑ The public static members can be accessed directly, without the using an object

instance.

❑ For example, a file using the experiment class could be the following (the

following sequence of values is considered: 0.5, 1.5, … , 9.5):

//main.cpp file

int main() {

 for (int i=0; i<10; i++)

 Experiment e(i+0.5);

 int n = Experiment::N();

 double m = Experiment::Med();

 cout<<"n = "<<n<<endl<<"Med = "<<m<<endl;

 return 0;

}

❑ One way that a static member function can have access at the non-static

member of the class to which it belongs, is by passing as parameter in the

static function of an object of the class.

Example. The class Folder stores the path for a current folder and a predefined

path, unique for all class objects. The static function preset allows setting the

current path for a folder which is passed as parameter.

class Folder {

public:

 static void setpath(char const *newpath);

 static void preset(Folder &dir, char const *path);

private:

 string Currentpath;

 static char path[];

};

char Folder::path[200] = "C:\\";

void Folder::setpath(char const * newpath) {

 strcpy(path, newpath);

}

void Folder::preset(Folder &dir, char const * newpath) {

 dir.Currentpath = newpath;

}

int main() {

 Folder dir;

 Folder::setpath("D:\\");

 dir.setpath("D:\\");

 Folder::setpath (dir, "D:\\OOP");

 dir.setpath (dir, "D:\\OOP");

 return 0;

}

Remarks.

1.The non-static member functions can refer static members of the

respective class (for example, the case of the constructor of Experiment

class).

2.A static member function which is private, cannot be called by means of

a class object.

3.If a member function is declared static in a class, but it not defined as

inline, the effective definition of this function does not contain the word

static.

For example:

class A {

 // ...

 static int x;

 static void SetX(int);

 // ...

} ;

 void A::SetX(int k) {

 x = k;

 }

❑ Static members in Python can be:

• Static data members in C++ → Static attributes (class variables)

• Static function members in C++ →

▪ Class methods

▪ Static methods

❑ Class variables are those attributes defined outside of the __init__ function:

• They are shared by all class instances

❑ For example:

class C:

 a = 1 # class variable

 def __init__(self, b_):

 self.b = b_ # instance variable

❑ In Python there are three types of methods:

• Instance methods (they have self as first argument)

• Class methods (they have cls as first argument)

• Static methods (they do not have self, neither cls)

❑ Both class methods and static methods can use class variables

• A class method by using the cls argument

• A static method by using the name of the class

❑ Both types of methods can be defined by using Python decorators

❑ Generally, static methods:

• are used to group functions which have some logical connection with a

class

• cannot modify class variables (neither instance variables)

• cannot be used when subclassing (inheritance)

❑ Example of using instance, class, and static methods of a Python class:

class Experiment:

 n = 0

 s = 0.0

 def __init__(self, x_):

 self.x = x_

 Experiment.n = Experiment.n + 1

 Experiment.s = Experiment.s + self.x

 @classmethod

 def med(cls):

 return cls.s / cls.n

 @staticmethod

 def getn():

 return Experiment.n

 def test()

 for i in range(10):

 e = Experiment(i+0.5)

 n = Experiment.getn()

 m = Experiment.med()

 print(n, m)

Remark. Both class methods and static methods can be called by using an

instance of the corresponding class

• In C++ this is not possible

e = Experiment(8)

 n = e.N()

 m = e.Med()

❑ Class methods:

o Can modify class variables (but not instance variables)

o Can be used in subclassing

o Usually, they can be used to create factory methods (because Python does

not support method overloading)

Example:

from datetime import date

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # Create a Person object by birth year (like a constructor)

 @classmethod

 def createFromBirthYear(cls, name, year):

 return cls(name, date.today().year - year)

 # Static method to check if a Person is adult or not

 @staticmethod

 def isAdult(age):

 return age >= 18

person1 = Person('John', 22)

person2 = Person.createFromBirthYear('Mary', 1999)

print (person1.age) # 22

print (person2.age) # 20

print (Person.isAdult(22)) # True

