
Extensions of the C language in the C++ language

There are two types of extensions of the C language:

❑ adding some facilities that are not related to object-oriented programming

paradigm (reference type, in-line substitution of the functions, etc.)

❑ adding elements in order to provide support for object-oriented programming

paradigm (class, inheritance, polymorphism, etc.)

A. A short history of C++

❑ The history of the C++ language can be divided in 3 periods:

o Early C++, starting to 1979, when Bjarne Stroustrup worked for his

Ph.D. thesis on the Simula language (which was too slow for practical

use)

▪ The first language developed by Stroustrup was called “C with

classes” – a superset of the C language, which:

• includes some object-oriented concepts (classes, inheritance, …)

• can produce high speed programs

▪ In 1983 the name of the language was changed in C++, and new

features were added (virtual functions and polymorphism, function

overloading, lvalue references, new and delete operators, …)

▪ In 1989 other new features were added (multiple inheritance, abstract

classes, …)

▪ In 1990, The Annotated C++ Reference Manual was released. This

book described the language, including some features (namespaces,

exception handling, nested classes, templates)

o Classical C++:

▪ In 1991: ISO C++ Committee was founded

▪ In 1992: Standard Template Library (STL) was implemented

▪ In 1998, the first ISO standard for C++ was published (C++98)

• New features were added (RTTI, covariant return types, cast

operators, mutable, bool)

• It includes the Standard Template Library (containers,

algorithms, iterators, function objects)

▪ The second standard was C++03

• This was a minor revision of C++98

o Modern C++:

▪ In 2011, the third standard was published: C++11:

• A large number of changes were introduced (auto and decltype,

defaulted and deleted functions, final and override, trailing return

type, rvalue references, move semantics, constexpr, nullptr, long

long, variadic templates, lambda expressions, range for, …)

▪ In 2014, the fourth standard was published: C++14:

• A minor revision of the C++11 standard

• Some new features were added (variable templates, polymorphic

lambdas, return type deduction for functions, aggregate

initialization)

▪ In 2017, the fifth standard was published: C++17:

• Some new features were introduced (fold-expressions, class

template argument deduction, auto non-type template

parameters, compile-time if constexpr, inline variables,

structured bindings, initializers for if and switch, …)

▪ The next major revision of the C++ standard: C++20 …

B. Classical C++

B1. New data types

❑ C++ has additional built-in data types

a) The bool datatype

• represents logical values (boolean),

• uses two predefined constants: true and false.

❑ There is a similarity with the Pascal language (Boolean datatype), and with

the Java language (boolean datatype).

❑ There is compatibility between the data type bool and arithmetic data types.

❑ The bool variables can be assigned with integer values because any C++

compiler automatically converts integer values to the bool value.

Example. For the following sequence :

 bool boolVar;

 int intVar;

 // ...

 boolVar = intVar;

the C++ compiler generates an equivalent expression :

 boolVar = intVar ? true : false;

❑ Similarly, there is also an automatic conversion from the bool values to the

integer values. For example:

 intVal = boolVal ? 1 : 0;

❑ Using the bool data type allows writing code with a simpler an intuitive

meaning. For example:

bool BelongsTo(double x, double a, double b);

b) The wchar_t datatype (wide character)

❑ It is an extension of the dataype char;

❑ It allows to using characters represented internally on two bytes (for example

the Unicode set of characters).

❑ Usually, for Windows, sizeof(wchar_t)=2, allowing to use sets of

characters having more than 64000 characters, while for Linux the size is 4

bytes.

❑ To assign a character to wchar_t type a letter “L” is added in front of the

character:

wchar_t wc = L’c’;

B2. Variable declaration and namespaces

❑ In the C++ language the local declarations can be appear anywhere within a

block (unlike the C language).

❑ The scope of such local declared variables starts to the line of the declaration

and it ends at the end of the current block.

❑ All the variables used in different modules of a C program are related to the

whole program.

❑ So, the variables with the same name declared in different modules of a

program access the same memory zone and represent the same variables.

❑ The C++ language attaches the variables to a namespace, which allows the

variables with the same name but in different modules to represent distinct

variables.

❑ All the variables declared in the standard libraries of the C++ language have a

predefined namespace, denoted by std.

❑ For using a namespace different to the current compilation unit, the directive

using is used:

using namespace std;

❑ For example, for working with the input/output operations the following

sequence should be used:

 #include <iostream>

using namespace std;

Remark.

❑ Header files related to the standard library of the C++ language do not

contain the suffix “.h” as in the C language.

❑ All header files related to the standard library of the C language are rewritten

in the C++ language, and their names have the character ’c’ as prefix. For

example:

#include <alloc.h>

is equivalent with:

#include <calloc>

using namespace std;

❑ However, in order to keep the compatibility with the C programs, the syntax

for including the standard header files of the C language can be also used in

the C++ programs.

B3. Lvalue references

❑ The C language allows only one way of passing the parameters when calling a

function, call by value, which requires using pointers in the case when a

function modifies the value of a certain parameter.

❑ The C++ language adds the notion of lvalue reference. A reference is an

alternative name (alias) for a variable.

❑ The reference type is a compound type, which is realized by using the operator

&. For example:
T&

represents the reference type derived from the base type T.

❑ The values of reference types are similar to pointers, in the sense that a

reference has as value the memory address of a variable belonging to a base

type.

❑ However, there are some important differences between pointers and

references:

a) A reference must be always initialized at the declaration. For example:

int k;

int &r = k;

b) References are automatically dereferred when using them in a program.

For example :

int k = 5, &r = k, *p;

p = &k;

r = r + 1; //that means k = k + 1

*p = *p + 1;

❑ The main way to use the reference mechanism is related to passing parameters

in functions.

Example. Swapping two values:

void Swap1(int *a, int *b) {

 int c = *a;

 *a = *b;

 *b = *c;

}

void Swap2(int &a, int &b) {

 int c = a;

 a = b;

 b = c;

}

void Process() {

 int x = 7, y = 5;

 Swap1(&x, &y);

 printf(%d%d, x, y);

 x = 7; y = 5;

 Swap2(x, y);

}

B4. Inline functions

❑ Initially In the case of small functions (with small number of statements):

• the calling mechanism can be significant in respect with the execution time

of the function,

• the execution time of the program can increase and its efficiency decreases.

❑ The C++ language offers the possibility to expand inline theses small

functions.

❑ When the inline function is called whole code of the inline function gets

inserted or substituted at the point of inline function call.

❑ Declaring an inline function can be made either:

a) for non-members functions of classes: by using the keyword inline

before its definition;

b) for a member function of a class: by including the implementation of the

function block in the class declaration.

Example:

inline int minim(int a, int b) {

 return ((a < b) ? a : b);

}

❑ In the case of the inline functions, the compiler tries to place an instance of the

calling function in the same code segment as the called function, but this fact

is generally not guaranteed.

❑ For complex functions (recursive functions, or functions having repetitive

statements) the inline mechanism is not performed.

❑ In general, the using of inline functions is more efficient than usual functions,

but it is less efficient than the using of macros.

❑ Remark. An inline function can be defined inside of a header file.

o In this case, each translation unit, which include this header will contain

the same function that will be inlined.

o In this way, the compiler allows the definition of a function to be visible in

multiple translation units (that include the header file)

Example.

// head.h

 inline int f(int n) {

 return 2 * n;

 }

 // pr1.cpp

 #include “head.h”

 static int a = 10;

 int g1(int k) {

 return a * f(k);

}

// pr1.cpp

 #include “head.h”

 static int a = 20;

 int g2(int k) {

 return a * f(k);

 }

 // main.cpp

 extern int g1(int);

 extern int g2(int);

 int main() {

 cout << “g1 = “ << g1(4);

cout << “g2 = “ << g2(4);

 return 0;

 }

❑ In the C++ language it is better to use inline function than macros:

o Inline functions are managed by the compiler, while macros are managed

by the pre-processor

o C++ compiler checks the argument types of inline functions and necessary

conversions are performed correctly. The preprocessor is not able of doing

this for macros

o Macro cannot access private members of class

B5. Default arguments for function parameters

❑ Usually, an important rule for many programming languages imposes the same

number of parameters both for the function definition and for the function call.

❑ The C language allows the definition (quite difficult) of some functions with

variable number of parameters, with the help of the operator ‘…’.

❑ In addition to the C language, the C++ language provides a simpler and more

efficient method for functions with a variable number of parameters: functions

with default values for parameters.

❑ A parameter with a default value is declared as usually through a name and a

data type, but in addition it is initialized with an appropriate value.

❑ If the function call contains an actual parameter, this value is used as

initialization; if the actual parameter is missing, the actual value is considered

as the initialization value.

Example.

double Distance(double x, double y,

double x0 = 0, double y0 = 0)

 {

 return sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)) ;

 }

 void Processing() {

 double x1 = 3, y1 = 5, x2 = 4, y2 = 6, d1, d2 ;

 //distance between(x1,y1) and origin

 d1 = Distance(x1, y1);

 //distance between (x1, y1) and (x2, y2)

 d2 = Distance(x1, y1, x2, y2);

 // ...

 }

Remarks :

a) A parameter with a default value can be initialized only with a constant

expression, which can be evaluated during compilation;

b) A function can have more parameters with default values, but in this case,

they must take the last positions (because otherwise the current values of the

parameters cannot be determined when calling the function)

B6. Function overloading

❑ Overloading of the functions name means the existence of two or more

functions with the same name which perform different tasks.

❑ The C++ language allows the definition of overloaded functions. For example,

the definitions of two functions with the same name add :

double add(double a, double b) {

return a + b;

}

char* add(char *a, char *b) {

 strcat(a, b); return a;

}

void Processing() {

double s = add(1.5, 8.4);

char *s1 = “abc”, *s2 = “xyz”;

char *s3 = add(s1, s2) ;

// ...

}

Remarks.

a) For defining two different overloaded functions they must have different

number of parameters or at least the data type of one of its parameters.

b) Two overloaded functions can not differ only by the type of the returned

value, because the type of the returned value is not verified by the compiler.

c) The compiler determines the effective function which will be called

depending of types of the actual parameters and their number.

B7. Operators for memory handling

❑ The C++ language has in addition to the C language two operators represented

by the keywords new and delete. The used syntax is:

 <pointer> = new [‘(‘] <type> [‘)’] [(<expression>)];

 delete <pointer>;

Example :

int *p = new int(4);

double *p = new(double);

struct point { double x, y; };

struct point *p = new struct point;

❑ These operators can be used also for memory allocation/deallocation for

compound elements. In the case of arrays, the length of the array must be

explicitly specified.

❑ In the case of the delete operator, if the number of the components is not

specified, this number is automatically determined by the compiler. The used

syntax is:

 <pointer> = new <type> ‘[‘ <dimension> ‘]’;

 delete ‘[‘ [<dimension>] ‘]’ <pointer>;

Example:

int *p, *q, *r;

*p = new int[10];

*q = new int[10];

*r = new int[10];

// Not O.K. Only the first element is deallocated

delete p;

// O.K. 10 elements are deallocated

delete[10] p;

// O.K. All elements are deallocated

delete[] p;

❑ The operator new can be used in addition for the creation of multi-dimensional

arrays. In this case all the dimensions of the array must be specified. For

example, the following expression:

new int[2][3][4]

allocates the memory for two arrays of the type:

 int [3][4]

and it returns a pointer to the first array, that is a pointer of the following type:

 int (*)[3][4]

❑ Regardless the number of the dimensions of an array that is allocated by the

operator new, the syntax for deallocation of this array by using the operator

delete is the same (only one pair of brackets).

Example:

int a[2][4] = {1, 2, 3, 4}, (*p)[4];

p = new int[2][4];

for (int i=0; i<2; i++)

 for (int j=0; j<2; j++)

 p[i][j] = a[i][j];

// ...

delete[] p;

Remarks:

a) The operator new calls by default a constructor the class if the data type is

an instance of certain class.

b) The operator delete calls by default the class destructor, if the pointer

indicates an instance of a certain class.

B8. Template functions

❑ The C++ language offers support for data abstraction and parameterization:

• template functions

• template classes.

❑ A template function contains at least a generic (unspecified) data type.

❑ The syntax for defining a template function impose the presence of the

following construction before the header of the function:

 template ‘<’ class name ‘>’

where name represents the name of the data, which is a parameter for the

template function, and it can be used inside the block of the function.

❑ A template function describes a set of functions having similar code but

different data types. It can be instantiated, each instance of a template function

being a usual function.

❑ The syntax to instantiate a template function is similar to a function call. In

addition, the actual name of the used data type must be specified in angle

brackets.

Example.

#include <iostream>

using namespace std;

template <class T>

void Swap(T & a, T & b) {

 T temp;

 temp = b;

 b = a;

 a = temp;

}

void main() {

 int a=3, b=5;

 double x=33, y=55;

 Swap<int>(a, b);

 cout << a << " " << b << endl;

 Swap<double>(x, y);

 cout << x << " " << y << endl;

}

Remark. In the above example the two calls of Swap can be replaced also by the

following sequence:

 Swap(a,b);

 Swap(x,y);

because the compiler can detect automatically the data types int and double

to which T will be instantiated

C. Modern C++

C1. New datatypes and syntax

a) The long long int datatype

❑ It is an integer type whose values are stored at least 64 bits;

❑ The exact dimension depends on the compiler;

❑ The limits values are defined in the header file climits:

❑ For long long int:

❑ LLONG_MIN: (-263+1) or less

❑ LLONG_MAX: (263-1) or greater

❑ For unsigned long long int:

❑ ULLONG_MAX: (264-1) or greater

b) The auto keyword

❑ In C++11, the meaning of the auto keyword has changed

❑ When initializing a variable, auto is used to tell the compiler to infer the

type of them variable from the type of the initializer.

❑ This is called type inference

Examples:

❑ For a variable:

auto x = 7.5; // double

auto n = 7; // int

❑ For the return values from functions:

int triple (int a) {

 return 3 * a;

}

int processing() {

 auto n = triple(4);

 return n;

}

❑ When auto sets the type of a declared variable from its initializing

expression, it proceeds as follows:

❑ If the initializing expression is a reference, the reference is ignored.

❑ If, after the above step 1 has been performed, there is a top-level const

and/or volatile qualifier, it is ignored

❑ Example:

const int c = 0;

auto rc = c; // type of rc is int

rc = 44; // OK

❑ Remark. The reference auto& related to a const value does not remove

the const qualifier

const int c = 0;

auto& rc = c; // type of rc is const int&

rc = 44; // error: const qualifier was not removed

❑ Starting to C++14, the auto keyword was extended to infer the return type of

a function:

auto triple (int n) { // int

 return 3 * n;

}

c) Trailing return type syntax

❑ C++11 also added a trailing return syntax, where the return type is specified

after the rest of the function prototype

❑ The following function declaration:

int triple (int a);

 could be equivalently written as:

 auto triple (int a) -> int;

❑ In this case, auto does not perform type inference, it is just part of the syntax

to use a trailing return type;

❑ This rare C++ feature was added to aid writing of generic code and to provide

consistency (will be later discussed)

d) The null pointer

❑ Before C++11, for the null pointer was used the NULL macro:

❑ It was typically defined as (void *)0

❑ Conversion of NULL to integral types is allowed (and is implicit)

❑ For this reason, the using of NULL can be ambiguous.

❑ For example, for two overloaded functions:

void f(int n) {

cout << "int";

}

void f(char* s) {

cout << "char *";

}

int main() {

 f(NULL); // error: call of f(NULL) is ambiguous

 return 0;

}

❑ For solving this problem, the literal nullptr was introduced:

❑ It has the type nullptr_t

❑ Like NULL, nullptr is implicitly convertible to any pointer type

❑ Unlike NULL, it is not implicitly convertible to integral types

❑ For the above example:

void f(int n) {

cout << "int";

}

void f(char* s) {

cout << "char*";

}

int main() {

 f(nullptr); // is called f(char*)

 return 0;

}

e) Type alias

❑ In C++11 another variant to rename a data type was added

❑ An alias declaration is used to declare a name to use as a synonym for a

previously declared type, similar to typedef from the C language:

using <identifier> = <type>;

Examples:

 using counter = long;

 typedef long counter; // is similar

❑ Aliases also work with function pointers, but are much more readable than the

equivalent typedef:

using func = void(*)(int);

typedef void (*func)(int);

❑ A limitation of typedef is that it doesn't work with templates. However, the

type alias syntax in C++11 enables the creation of alias templates:

template<typename T> using Ptr = T*;

// Ptr<T>' is an alias for a pointer to T

Ptr<int> ptrInt;

f) Uniform initialization

❑ Uniform initialization is a feature in C++11 that allows the usage of a

consistent syntax to initialize variables and objects ranging from primitive type

to aggregates

❑ It introduces brace-initialization that uses braces {} to enclose initializer

values

❑ Syntax:

<type> <variable> {<argument list>};

Examples.

I. Classical syntax:

int i; // uninitialized built-in type

int j=5; // initialized built-in type

int k(5); // initialized built-in type

int a[]={1, 2, 3, 4}; // array initialization

II. New syntax
int i{}; // uninitialized built-in type

int j{5}; // initialized built-in type

int a[]{1, 2, 3, 4}; // array initialization

❑ Aggregate initialization initializes an aggregate from a braced-init-list

❑ An aggregate is one of the following types:

o array type

o class type:

▪ struct or union that has no private or protected data members

Examples (for arrays):

int a[]{1, 2, 3, 4}; // array initialization

char a[] = "abc"; // classic character array

// char a[4] = {'a', 'b', 'c', '\0'};

char b[]{"abc"}; // aggregate initialization

// char b[4] = {'a', 'b', 'c', '\0'};

char c[5]{"abc"}; // aggregate initialization

// char b[5] = {'a', 'b', 'c', '\0', '\0'};

Examples (for structures):

struct S { char c; double x; int n; };

// aggregate initialization with initializer list

S a{‘t’, 2.5, 2};

S b{‘u’, 1.5}; // OK - incomplete initializer list

// S b{‘u’, 1.5, 0};

struct A {

 int n;

 struct B { int i; int j; int a[3]; } b;

};

A a1 = {1, {2, 3, {4, 5, 6}}}; // classical

A a2 = {1, 2, 3, 4, 5, 6}; // same, brace elision

// same, direct-list-initialization syntax

A a3{1, {2, 3, {4, 5, 6}}};

// until C++14, error:

// brace-elision only allowed with equals sign

A a4{1, 2, 3, 4, 5, 6};

g) Structured bindings

❑ Starting to C++17, structured bindings allows a way define several objects

instead of one, in a more natural way than in the previous versions of C++

❑ Structured bindings gives the ability to declare multiple variables initialized

from a composite object (an array, a struct, or a tuple)

o Like a reference, a structured binding is an alias to an existing object

o Unlike a reference, the type of a structured binding does not have to be a

reference type

❑ Syntax can have 3 forms:

auto [<identifier-list>] = <expression>;

auto [<identifier-list>] {<expression>};

auto [<identifier-list>] (<expression>);

where:

- <identifier-list> : a list of comma separated variable names

- <expression> : an expression that does not have the comma

operator at the top level, and has either array or non-union class type

❑ The auto keyword can optional be followed by a reference operator (& for

lvalue references, or && for rvalue references)

❑ Inference type deduction. Let E denote the type of the initializer expression.

Then:

o if E is an array type,

▪ then the names are bound to the array elements

o if E supports tuple_size<E> and provides get<N>() function (tuples

from STL library or other containers similar to tuple: pair, …),

▪ then the “tuple-like” binding protocol is used

o if E contains only non static, public members,

▪ then the names are bound to the accessible data members of E

Examples:

❑ Case 1: binding an array:

int a[3] = {1, 2, 3};

// x is a copy of a[0], y is a copy of a[1], …

auto [x, y, z] = a; // x==1, y==2, y==3

auto& [u, v, t] = a; // u==a[0], v==a[1], t==a[2]

❑ Case 2: binding a tuple-like type:

#include <tuple>

#include <string>

tuple<int, double, string> tp(5, 1.2, “abc”);

auto [n, x, s] = tp; // n==5, x==1.2, s==”abc”

❑ Case 3: binding to data members:
struct Point {

 int x;

 int y;

};

Point p{3, 5};

auto [xp, yp] = p; // xp==3, yp==5

Example. A more practical example for using the structured bindings: iterating

over a compound collection.
#include <iostream>

#include <utility> // for pair container

#include <map> // map container

using namespace std;

typedef pair<double, double> Coord; // geog. coord.

int main() {

 map<string, Coord> cities; // map of cities

 Coord c1(44.339241, 23.796380);

 Coord c2(44.434053, 26.120410);

 Coord c3(45.670482, 25.575787);

 // insert in the map

 cities[“Craiova”] = c1;

 cities[“Bucharest”] = c2;

 cities[“Brasov”] = c3;

 // iterating over the map

 for (auto& [name, coord] : cities) {

 cout << “City: “ << name << endl;

 cout << “lat. = “ << coord.first << endl;

 cout << “long. = “ << coord.second << endl;

 }

 return 0;

}

h) Binary literals (since C++14)

❑ A binary literal is compound by the character sequence 0b or 0B, followed by

one or more binary digits (0, 1)

❑ The data type of a binary literal is integer

Example.

int b1 = 0b101011; // 43

long int b2 = 0B101010; // 42

C2. Expressions

a) Type of expressions

❑ Before C++11, the expressions were of two types: lvalue and rvalue

❑ Starting to C++11 there are several types for expressions:

❑ glvalue, rvalue

❑ lvalue, xvalue, prvalue

❑ The reason is the introduction of new concepts such as move semantics,

move constructor, move assignment operator and rvalue reference

rvalue

expression

glvalue

lvalue xvalue prvalue

❑ The main types are:

❑ lvalue (Left value, as before): designates an object, a location in

memory

❑ xvalue (eXpiring value): an object towards the end of its’ lifetime

(typically used in move semantics)

❑ prvalue (Pure rvalue): represents an actual value (which is temporary)

❑ glvalue means Generalized lvalue, which is a lvalue or a xvalue

❑ The meaning of rvalue (Right value) has evolved with the introduction of

move semantics, and it represents a xvalue or a prvalue

b) decltype specifier

❑ Yields the type of its operand, which is not evaluated

❑ For a construct decltype(expr):

o If the operand expr is a class member access without any additional

parentheses, then decltype(expr) is the declared type of the member

accessed

Example:

struct S {

 int x = 42;

};

const S s;

decltype(s.x) y;

// Equivalent: int y,

// even though s.x is const

o In all other cases, decltype(expr) yields both the type and the value

category of the expression e, as follows:

▪ If expr is a lvalue of type T, then decltype(expr) is T&

▪ If expr is a xvalue of type T, then decltype(expr) is T&&

▪ If expr is a prvalue of type T, then decltype(expr) is T

o If the name of an object is parenthesized, it is treated as an ordinary lvalue

expression

❑ Remark. decltype does not drop the reference and the const qualifier.

Example:

const int cx = 42;

const int& crx = x;

auto a = cx; // a is int

auto b = crx; // b is int

typedef decltype(cx) cx_type; // cx_type is const int

typedef decltype(crx) crx_type; // crx_type is const int&

❑ Some examples:

int x = 0;

int y = 0;

const int c1 = 42;

const int c2 = 43;

double d1 = 3.14;

double d2 = 2.72;

// the type of the product is int,

// the product is a prvalue => type of xy_type is int

typedef decltype(x * y) xy_type;

// the type of the product is int (not const int),

// the product is a prvalue => type of c1c2_type is int

typedef decltype(c1 * c2) c1c2_type;

// the type of expression is double,

// expression is a lvalue => type of cond_type is double&

typedef decltype(d1 < d2 ? d1 : d2) cond_type;

// the type of expression is double,

// the expression is a prvalue,

// because for translating x to a double,

// a temporary object has to be created

// => type of cond_type1 is double

typedef decltype(x < d2 ? x : d2) cond_type1;

auto c = 0; // c has type int

auto d = c; // d has type int

decltype(c) e; // e has type int, the type of c

// f has type int&, because (c) is a lvalue

decltype((c)) f = c;

// g has type int, because 0 is a rvalue

decltype(0) g;

int f() { return 42; }

int& g() { static int x = 42; return x; }

int x = 42;

decltype(f()) a = f(); // a has type int

decltype(g()) b = g(); // b has type int&

❑ Since C++14, the special form decltype(auto):

o deduces the type of a variable from its initializer, or the return type of a

function from the return statements in its definition,

o using the type deduction rules of decltype rather than those of auto

❑ Example:

const int x = 123;

auto y = x; // y has type int

// z has type const int, the declared type of x

decltype(auto) z = x;

c) constexpr specifier

❑ Initially constexpr was a feature added in C++11 for performance

improvement of programs:

o Performing computations at compile time rather than run time

▪ It is better to spend time in compilation and save time at run time

❑ Mainly, constexpr specifies that the value of a variable (C++11) or a

function (C++14) can be evaluated at compile time and the expression can

be used in other constant expressions

❑ A constexpr variable must satisfy the following requirements:

o It must be immediately initialized (as in the const case)

o The initialization expression must be a constant expression

❑ A constexpr function must satisfy the following requirements:

o It must consist of single return statement

o It can call only other constexpr functions

o It can reference only constexpr global variables

Example. Consider the following program:

#include <iostream>

using namespace std;

constexpr long long int fib(int n) {

 return (n <= 1)? n : fib(n-1) + fib(n-2);

}

int main () {

 const long long int v = fib(50);

 cout << v;

 return 0;

}

❑ Running on some mingw compiler the above program takes 0.187 seconds

❑ Replacing

const long long int v = fib(50);

by
long long int v = fib(50);

 on the same compiler the program takes 123.864 seconds

❑ The compiling time is reverse: 12 seconds / 1 second

❑ Because a constexpr function must have only one return statement, in the

case of recursive functions, the conditional operator has to be used

❑ The keywords constexpr and const serve different purposes:

o constexpr is mainly for optimization

o while const is for defining constant objects

❑ The principal difference between const and constexpr is the time when

their initialization values are evaluated:

o while the values of const variables can be evaluated at both compile

time and runtime,

o constexpr are always evaluated at compile time.

❑ For example:

 int t = rand(); // t is generated at runtime

 const int x1 = 10; // OK - known at compile time

 const int x2 = t; // OK - known only at runtime

 constexpr int x3 = 10; // OK - known at compile time

 constexpr int x4 = t; // ERROR - known only at runtime

❑ There is some similarity between constexpr functions and template

metaprogramming (compile-time programming, static metaprogramming)

❑ Example of a constexpr function for factorial:

constexpr int factorial (unsigned int n) {

 return (n <= 1 ? n : n * factorial(n-1));

}

int main () {

const int f = factorial(10);

cout << f; }

❑ And the same action by using the template metaprogramming:

template <int N>

struct Factorial {

 static const int res = N * Factorial<N-1>::res;

};

template <>

struct Factorial<0> {

 static const int res = 1;

};

int main () { cout << Factorial<10>::res; }

C3. Inline variables (C++17)

❑ Global variables, and static variable can be declared as inline

❑ The same rules applied to inline functions are applied to inline variables:

o There can be more than one definition of an inline variable

o The definition of an inline variable must be present in the translation

unit, in which it is used

o A global inline variable must be declared inline in every translation unit

and has the same address in every compilation unit

❑ As a general benefit, an inline variable can be defined into a header file and

included them more than once in other translation units

❑ If there is a need to declare global variables that are shared between several

compilation units, declaring them as inline variables in a header file is

simple and avoids some problems with pre-C++17 workarounds

❑ For example, one workaround is to use the Scott Meyer singleton with an

inline function, which has some drawbacks in terms of performance:

// head.h

inline int& instance() {

 static int globalVar;

 return globalVar;

}

// pr1.cpp

#include “head.h”

int a = instance();

// pr2.cpp

#include “head.h”

int a = instance(); // the same global variable

❑ With inline variables, this variable can be directly declared, without getting a

multiple definition linker error:
// head.h

inline int a;

// pr1.cpp

#include “head.h”

int b = a;

// pr2.cpp

#include “head.h”

int c = a; // the same global variable

C4. Statements

a) Range-based for loop

❑ Executes a for loop over a range

❑ Used as a more readable equivalent to the traditional for loop operating over a

range of values, such as all elements in a container

❑ Syntax:

for (range_declaration : range_expression) loop_statement

o range_declaration: a declaration of a named variable, whose type is the

type of the element of the sequence represented by range_expression, or a

reference to that type; often uses the auto specifier for automatic type

deduction

o range_expression: any expression that represents a suitable sequence, or a

braced-init-list (a list of elements between braces)

❑ Examples:

#include <iostream>

#include <string>

#include <vector>

using namespace std;

int main() {

// Iterating over array

int a[] = {1, 2, 3, 4, 5};

 for (auto n : a)

 cout << n << ' ';

 // Iterationg over string characters

 string str = "Language";

 for (auto c : str)

 cout << c << ' ';

// Iterating over an array

 vector<int> v = {10, 11, 12, 13, 14};

 for (auto i : v)

 cout << i << ' ';

}

b) if statement with constexpr and init statement

❑ Since C++17 the syntax of the if statement was modified:

if [constexpr] ([<init-statement>;] <condition>)

 <statement-true> //Discarded if condition is false

[else

 <statement-false> //Discarded if condition is true

]

❑ The keyword constexpr is optional. If it is used:

o The condition is evaluated at compile time

o Determines which of the two sub-statements to compile, discarding the

other

▪ This means that one branch can be rejected at compile time, and thus

will never get compiled

Example. A function get that works in a similar way as in the case of STL

tuple container.

#include <iostream>

#include <string>

using namespace std;

struct triple {

int n;

 double x;

 string s;

};

template <size_t I>

auto& get(triple& t) {

 if constexpr (I == 0)

 return t.n;

 else if constexpr (I == 1)

 return t.x;

 else if constexpr (I == 2)

 return t.s;

}

int main() {

 triple t{5, 5.5, "string"};

 cout << get<0>(t) << ", " << get<1>(t) << endl;

}

❑ The <init-statement> is optional. It is similar to the init expression from

the for statement.

❑ The following code:

<init-statement>;

if (<condition>)

 <statement-true>;

else

 <statement-false>;

is similar to:

if (<init-statement>; <condition>)

 <statement-true>;

else

 <statement-false>;

❑ The scope of the conditioned variable is limited to the current if-else block

o This also allows us to reuse the same named identifier in another

conditional block.

▪ Which in turn avoids variable leaking outside the scope

Example.

#include <iostream>

#include <ctime>

#include <cstdlib>

using namespace std;

int main() {

 srand((unsigned)time(NULL));

 if (int rn = rand(); rn % 2 == 0) {

 cout << rn << " is an even number\n";

 } else {

 cout << rn << " is an odd number\n";

 }

 return 0;

}

c) switch statement with init statement

❑ Similar to the if statement (<init-statement> is optional):

switch ([<init-statement>;] <condition>)

<statement>

Example.

int integerType(const string &s) {

 // determine the type of an integer literal

 // returns:

 // 1: decimal type (ex. 183)

 // 2: octal type (ex. 017)

 // 3: hexadecimal type (ex. 0x1a3, 0X27c)

 // 4: binary type (ex. 0b101, 0B11)

 // 5: unknown type

 // Implement this function

}

void printIntegerType(const string &s) {

 switch(auto t = integerType(s); t) {

 case 1:

 cout << “decimal type\n”;

 break;

 case 2:

 cout << “octal type\n”;

 break;

 case 3:

 cout << “hexadecimal type\n”;

 break;

 case 4:

 cout << “binary type\n”;

 break;

 default:

 cout << “unknown type\n”l

 }

}

C5. Lambda functions

❑ Will be discussed later

