
Programming paradigms

A programming paradigm (a programming style) is a method to conceptualize

the way:

❑ of execution the calculations within a computer,

❑ of structuring and organizing the tasks responsible with these calculations

A programming language:

❑ offers support for a programming style if the programming language allows

enough facilities that make it useful in this style

❑ allows only to use a programming style if the needed effort to write a program

in this style is greater, the programming language does not offer enough

facilities

A. Procedural programming

❑ It is one of the oldest and most used paradigms

❑ This paradigm implies the following steps:

a) the decomposition of the problem to be solved in smaller problems

b) finding for each small problem an optimal algorithm

c) implementing of each algorithm by using functions and procedures

of an appropriate programming language

Example. Determining if an integer is a prime number:

A) In C:
 int Prime(int n) {

 int i;

 for (i=2; i<n; ++i)

 if (n%i == 0)

 return 0;

 return 1;

 }

 void PrimeFactors(int n) {

 int i;

 for (i=2 ; i<n/2 ; i++) {

 if (n%i == 0 && Prime(i)) {

 printf(“%d\n”, i);

 }

 }

 }

B) In Python:

def prime(n):

 for i in range(2, n - 1):

 if n % i == 0:

 return False

 return True

def prime_factors(n):

 for i in range(2, n // 2):

 if n % i == 0 and prime(i):

 print(i)

❑ In Python functions are a powerful mechanism

❑ Nested functions: functions defined in the scope of another functions

def outer(num1):

 def inner_increment(num1):

 return num1 + 1

 num2 = inner_increment(num1)

 print(num1, num2)

outer(10)

❑ An outer function can return an inner function

def fib(n):

 def f_rec():

 return fib(n-1) + fib(n-2)

 if n == 0:

 return 0

 elif n == 1:

 return 1

 else:

 return f_rec()

for k in range(10):

 fib(k)

❑ A factory function: can create several functions (a design pattern)

def create_adder(x):

 def _adder(y):

 return x + y

 return _adder

add2 = create_adder(2)

add100 = create_adder(100)

print(add2(50))

print(add100(50))

>>> 52

>>> 150

❑ Function decorators: wrappers to existing functions (a design pattern)

def make_bold(fn):

 def wrapper():

 return "" + fn() + ""

 return wrapper

def get_text():

 return "hello"

bold_text = make_bold(get_text)

❑ Python's Decorator Syntax:

def make_bold(fn):

 def wrapper():

 return "" + fn() + ""

 return wrapper

@make_bold

def get_text():

 return "hello"

get_text()

B. Data encapsulation (modularization)

❑ The accent in procedural programming has moved from the function design

to the data organization.

• Data are not regarded in isolation; they are regarded together with the

functions that they process.

❑ In this paradigm the notion of module was defined as representing a set of

related functions, together with data processed by these functions.

❑ A module contains:

• An interface, where data and functions accessible outside of the module

are declared;

• An implementation, which is inaccessible outside to the module, where

functions manipulating data from the module are defined.

❑ The C language allows only data encapsulation:

• The interface part is usually specified in a header file that must be

included in all the others files of a program that use the module functions;

• The implementation part of the module is realized in a distinct file which

must be included in the program project.

Example. Defining and using a module that allows the operations with integers:

 //file ‘sequence.h’: the interface

 #define max_dim 100

 void Init() ;

 int Summ() ;

 void Sort() ;

 void AddElement(int) ;

 void Print() ;

 //file ‘sequence.c’: the implementation

 #include “sequence.h“

 static int dim ;

 static int v[max_dim] ;

 void Init() { dim = 0 ; }

 void AddElement(int k) {

 v[dim++] = k ;

}

 int Summ() {

 /* the code for the sum determination */

}

 void Sort() {

 /* the code for sorting */

 }

 int Print() {

 /* the code for printing */

 }

 //file ‘pr.c’: using the module ‘sequence’

 #include “sequence.h”

 void Processing() {

 int i, s, k, n = 0 ;

 Init() ;

 for(i=0 ; i<n ; i++) {

 scanf(“%d”, &k) ;

 AddElement(k) ;

 }

 s = Sum() ;

 printf(“\nSum=%d”, s) ;

 Sort() ;

 Print() ;

 }

The Python language uses modularization in a different way:

• A module represents package of variable names and objects, known as a

namespace

• A module is usually a Python file, the highest-level program

organization unit

• The names within a module are called attributes

• An attribute is a variable name that is attached to a specific object

❑ Modules are processed with two statements:

• import: allows a module client (importer) to fetch another module as a

whole

• from: allows modules to fetch particular names from another module

❑ Import operations load a Python file and grant access to its contents

• The contents of a module are made available to the outside world through

its attributes

❑ This module-based model represents the core idea behind program

architecture

• Larger programs usually take the form of multiple module files, which

import tools from other module files.

• One of the modules is designated as the main or top-level file: the file

launched to start the entire program

❑ There is a difference between a C #include macro and a Python import

statement:

• import is a runtime operation that performs three distinct steps:

1. Find the module’s file

2. Compile it to byte code

3. Run the module’s code to build the objects it defines

• All the above steps are carried out only the first time a module is imported

during a program’s execution

Example. Defining and importing a module:

file m1.py

def my_print (x): # my_print is a module attribute

 print(x)

file m2.py

import m1

m1.my_print('Hello world!')

When the file m2.py is loaded, it prints the message:
Hello world!

Remark. m1 is an object, and my_print is an attribute (qualification is required)

❑ The from statement copies specific names from one module into another

scope

• It allows us to use the copied names directly, without the name of the

imported module

Example. Using the from statement:

file m3.py

from module m1 import my_print

my_print('Hello world!')

When the file m2.py is loaded, it prints the same message

❑ A special form of from:
• from <module> import *

• it imports of all names assigned at the top level of the referenced module

❑ A Python module exports all the names assigned at the top level of its file

• There is no way to prevent a client from changing names inside an

imported module

❑ In Python, data hiding in modules is only a convention, not a syntactical

constraint

• Encapsulation in Python is more about packaging than about restricting

❑ As a special case, the names can be prefixed with a single underscore to

prevent them from being copied out, when a client imports a module’s names

with a from * statement

❑ Unfortunately, underscores are not “private” declarations:

• an importer module can still see and change such names with other

import forms, such as the import statement:

md.py

a, _b, c, _d = 1, 2, 3, 4

md1.py

from md import *

print(_b)

print(a, c)

(1, 3)

NameError: name '_b' is not defined

md2.py

import md

print(md._b)

2

Example. The previous example using Python modules:

module seq.py

import sys

L = []

def init_seq():

 L.clear()

def add_elem(a):

 L.append(a)

def sum():

 s = 0

 for a in L:

 s = s + a

 return s

def sort_seq():

 L.sort()

def print_seq():

 print(L)

module proc.py

from seq import *

def seq_proc():

 init_seq()

 text_len = input('seq_len=')

 n = int(text_len)

 for i in range(n):

 text_elem = input('elem=')

 a = int(text_elem)

 add_elem(a)

 s = sum()

 print('sum = ', s)

 print_seq()

 sort_seq()

 print_seq()

seq_proc()

C. Object-Based Programming

❑ Object-based programming is a programming paradigm that use the notions

of encapsulation and objects with operations.

❑ Encapsulation is related to the notion of abstract data types

❑ Abstract data types are the basis of object-based programming

❑ An abstract data type (ADT) represents:

• A set of operations that can be performed on the set of its elements (the

interface, which is accessible from outside);

• A set of axioms, which represents the way to describe the properties of the

elements and of their operations;

• A set of preconditions and postconditions that specify conditions in which

each operation can be called, and the state of the system after the calling of

each operation respectively

❑ The implementation of an ADT into a programming language represents a data

type.

❑ The implementation of a user data type is realized through the notion of class.

❑ A class describe the common structure of a set of objects

❑ All objects described by a class A are called instances of this class.

❑ Each object has its own state: e.g. values for each component of the object

❑ Examples of object-based languages (that are not object-oriented):

❑ Early versions of Ada

❑ Visual Basic (before .NET)

❑ Fortran 90

❑ Sometimes, the term object-based is applied to prototype-based languages:

o are partially object-oriented languages that do not have classes,

o in which objects inherit their code and data directly from other template

objects

❑ An example of a commonly used prototype-based language is JavaScript

❑ In JavaScript, any object has a prototype, including functions

❑ The prototype is a simple way of adding object members to any newly created

instance of the whole object

Example:
var constructor = function() { };

constructor.prototype.text = "hello world";

alert(new constructor().text); // This alerts hello world

❑ The C++ language allows the programmers to define user data type by using

classes and operator overloading.

❑ In C++, a class can be regarded as an extension of the structure of the C

language, which allows to define inside of the class both data and functions

using data.

Example. The definition of a data type representing the rational numbers

(fractions):

//the file ‘fraction.h’: the interface part of the class

struct fraction {

 /* the numerator and the denominator */

 int p, q;

 /* constructor */

 fraction (int _p = 0, int _q = 1);

 /* operations */

 fraction Sum(fraction);

 fraction Mult(fraction);

 fraction Div(fraction);

};

//the file ‘fraction.cpp’: the implementation part of the class

#include “fraction.h”

fraction::fraction (int _p = 0, int _q = 1) {

 p = _p;

 q = _q;

}

fraction fraction::Sum(fraction f) {

 p = p * f.q + f.p * q;

 q = q * f.q;

 return *this;

}

fraction fraction::Mult(fraction f) {

 p = p * f.p;

 q = q * f.q;

 return *this;

}

fraction fraction::Div (fraction f) {

 p = p / f.q;

 q = q / f.p;

 return f;

}

//the file ‘pr.cpp’: using the class fraction

#include “fraction.h”

void Processing() {

 fraction f1(1, 2), f2(7, 4), f3;

 f3 = f1.Mult(f2).Sum(f1.Div(f2));

 printf(“\nf3 = %d/%d”, f3.p, f3.q);

}

Example. The above example of the rational numbers, where functions are

defined as overloaded operators:

//the file ‘frac.h’ - definition of the fraction class

 class fraction {

 int p, q;

 public :

 //the constructor

 fraction(int a = 0, int b = 1) {

 p = a;

 q = b;

 }

 //declaration of the overloaded operators

 friend operator + (fraction, fraction);

 friend operator * (fraction, fraction);

 friend operator / (fraction, fraction);

 };

//the file ‘frac.cpp’- overloaded operators are implemented

 #include “frac.h”

 fraction operator+(fraction f1, fraction f2) {

 fraction f;

 f.p = f1.p * f2.q + f2.p * f1.q;

 f.q = f1.q * f2.q;

 return f;

}

 fraction operator*(fraction f1, fraction f2) {

 fraction f;

 f.p = f1.p * f2.p;

 f.q = f1.q * f2.q;

 return f;

}

 fraction operator/(fraction f1, fraction f2) {

 fraction f;

 f.p = f1.p / f2.q;

 f.q = f1.q / f2.p;

 return f;

}

//the file ‘pr.cpp’ - using the class fraction

 #include “frac.h”

 void Processing() {

 fraction f1(1, 2), f2(7, 4), f3;

 f3 = f1*f2 + f1/f2;

 // ...

 }

Example. The previous example using Python classes:

module frac.py

class Fraction:

 def __init__(self, a=0, b=1):

 self.p = a

 self.q = b

 def __add__(self, f):

 a = self.p * f.q + f.p * self.q

 b = self.q * f.q

 return Fraction(a, b)

 def __mul__(self, f):

 a = self.p * f.p

 b = self.q * f.q

 return Fraction(a, b)

 def __truediv__(self, f):

 a = self.p / f.p

 b = self.q / f.q

 return Fraction(a, b)

 def __str__(self):

 return "({0}/{1})".format(self.p, self.q)

module usingfrac.py

from frac import *

def processing():

 f1 = Fraction(1, 2)

 f2 = Fraction(7, 4)

 f3 = f1*f2 + f1/f2

 print(f3)

processing()

❑ Functions whose name contains double leading and trailing underscore (__)

are called special functions in Python

❑ The __init__() function from a class represent its constructor that

initializes data members (attributes) of a class instance

❑ Because all methods of a class must have self (representing the current

instance of the class) as the first parameter,

▪ All local attributes must be initialized in __init__():

def __init__(self, a=0, b=1):
self.p = a

 self.q = b

❑ There is no special section in a class for defining its attributes

▪ All local attributes of class instances must be defined in the

__init__() function

▪ Attributes defined outside of class methods are global attributes of

that class

❑ The special __str__() method specifies how values of the class’ attributes

will be printed

❑ It uses the format() method of the string built-in type in order to

describe data conversion
def __str__(self):

 return "({0},{1})".format(self.p, self.q)

❑ Some special functions representing operator overloading:

Operator Expression Meaning

Addition p1 + p2 p1.__add__(p2)

Subtraction p1 - p2 p1.__sub__(p2)

Multiplication p1 * p2 p1.__mul__(p2)

Power p1 ** p2 p1.__pow__(p2)

Division p1 / p2 p1.__truediv__(p2)

Floor Division p1 // p2 p1.__floordiv__(p2

)

Remainder (modulo) p1 % p2 p1.__mod__(p2)

Bitwise Left Shift p1 << p2 p1.__lshift__(p2)

Bitwise Right Shift p1 >> p2 p1.__rshift__(p2)

Bitwise AND p1 & p2 p1.__and__(p2)

Bitwise OR p1 | p2 p1.__or__(p2)

Bitwise XOR p1 ^ p2 p1.__xor__(p2)

Bitwise NOT ~p1 p1.__invert__()

Indexing p1[p2] P1.__ getitem__(p2)

❑ One important feature of data abstraction represented by data

parametrization. The C++ language provide support for parametrization by

using the template mechanism.

❑ The problem of parametrization appears when the programmer wants to

define some generic data types, where the data type of the components is

unspecified.

Example. The definition in the C++ language of a vector class, where the data

type of the components is generic.

 template<class T>

 class vector {

 T *v; // the array whose components

 // have the generic data type T

 int dim; // dimension of the array

 public:

 // the constructor

 vector(int n) {

 if (n > 0)

 v = new T[dim = n];

 }

 // the indexing operator

 T& operator[](int k) { return v[k]; }

 int Dimension() { return dim; }

 };

❑ An array object can be created by instantiating the generic class:

// an array with 20 integer components

vector<int> v1(20);

// an array with 10 real components

vector<double> v2(10);

v1[7] = 5;

v2[7] = 2.3;

❑ Python generally do not use generic data types

❑ Python is not a statically typed language

❑ It is instead a dynamically non-typed language

❑ Generic data types can be viewed by using a convention:

❑ that define a contract for a class

❑ and use this contract for creating class instances

Example:

module mystack.py

class MyStack:

 def __init__(self):

 self.items = []

 # the top of the stack is the last element

 def push(self, elem):

 self.items.append(elem)

 def pop(self):

 return self.items.pop()

 def empty(self) -> bool:

 return not self.items

module usemystack.py

from mystack import *

stack1 = MyStack()

stack1.push(2) #add only integers

stack1.push(3) #add only integers

x = stack1.pop() #a homogeneous container

print(x)

stack2 = MyStack()

stack2.push(‘aaa’) #add only strings

stack2.push(‘bbb’) #add only strings

y = stack2.pop() #a homogeneous container

print(x)

stack3 = MyStack() #contract is not respected

stack3.push(‘aaa’) #a heterogeneous container

stack3.push(27)

z = stack3.pop()

print(x)

❑ However, starting with the version 3.5, the Python distribution contains a

module called typing, which defines the fundamental building blocks for

the usage of static type checking

❑ Among others, this module contains two important elements: TypeVar and
Generic

❑ In typing, a theory of types is developed, which support statically type

checking:

❑ Type variables can be defined by using a factory function, TypeVar():

T = TypeVar('T') # T is a type variable

❑ A type variable can be instantiated with an existing type:

def do_sum(a: T, b: T):

 return a + b

x = do_sum(2, 5) # T is an int

print(x) # 7

y = do_sum(‘abc’, ‘xyz’) # T is a string

print(y) # ‘abcxyz’

❑ Generic classes can be constructed by inheriting from a generic base class,

defined in Generic:

class Stack(Generic[T]):

 pass

Example. Defining and using a generic stack class.

module generic.py

from typing import TypeVar, Generic

T = TypeVar('T') # Declare a type variable

class Stack(Generic[T]):

 # An empty list with items of type T

 def __init__(self) -> None:

 self.items = []

 def push(self, item: T) -> None:

 self.items.append(item)

 def pop(self) -> T:

 return self.items.pop()

 def empty(self) -> bool:

 return not self.items

module usegen.py

from generic import *

stack1 = Stack[int]() # instantiation: T->int

stack1.push(2) # OK

stack1.push(3) # OK

x = stack1.pop()

print(x) # 3

stack1.push(‘abc’) # Type error

stack2 = Stack[str]() # instantiation: T->str

stack2.push('aa') # OK

stack2.push('bb') # OK

y = stack2.pop()

print(y) # ‘bb’

stack1.push(5) # Type error

D. Object-oriented programming (OOP)

❑ The notion of class:

• is specific to the object-based programming paradigm (not to OOP);

• is a basic element in the OOP paradigm.

❑ Properties (components) of a class can be described by:

• data (attributs),

• functions (methods).

❑ The instances of a class are called objects. An object is uniquely identified by

its name.

❑ For example, the definition of three instances of the class fraction:
 fraction f1(1, 2), f2(7, 4), f3;

❑ An instance of a class defines the state of its corresponding object, which it is

represented by the current values of the attributes of the object at a certain

moment.

❑ A method describes the way an object reacts when it receives a certain message

from another object. A message is a request of a certain object to the current

object to invoke a specific method of the current object.

❑ In the C++ language sending a message to an object means the calling of a

specific method of that object.

❑ A first essential element of OOP is to allow the difference between the

general and the particular properties of objects.

❑ It follows an important property of object-oriented languages: they allow the

partition of objects into classes, and also a mechanism for inheriting the

properties of a class into another class.

❑ In this way classes can form hierarchies of classes based on the inheritance

mechanism

 Example. Let us consider the following polygonal figures in a plane: triangles,

quadrilaterals, pentagons, etc., each polygon being described by the coordinates

of its vertexes in trigonometric order.

 - One can define a class hierarchy, which has the polygon class as the root,

the others classes inheriting the class polygon.

 - Let us suppose that for the polygon class there are specified the coordinates

for the first two vertices of the polygon, P0(x0,y0) and P1(x1,y1), the other classes

having to store one after another the coordinates of the next vertex.

class Polygon {

 // ...

 public:

 Polygon(_x0, _y0, _x1, _y1);

 virtual ~Polygon();

 virtual double Perimeter();

 protected:

 double x0, y0, x1, y1;

 virtual double TwoEdges() = 0;

 virtual double OneEdge() = 0;

 // ...

} ;

P0

P1

P2

P3 P4

class Triangle : public Polygon {

 // ...

 public:

 Triangle(_x0, _y0, _x1, _y1, _x2, _y2);

 double Perimeter();

 protected:

 double x2, y2;

 double TwoEdges ();

 double OneEdge();

 // ...

} ;

class Qadrilateral : public Triangle {

 // ...

 public:

 Qadrilateral(_x0, _y0, _x1, _y1, _x2, _y2, _x3, _y3);

 double Perimeter();

 protected:

 double x3, y3;

 double TwoEdges ();

 double OneEdge ();

 // ...

 };

❑ Some function implementations:

Polygon::Polygon(_x0, _y0, _x1, _y1):

 : x0(_x0), x1(_x1), y0(_y0), y1(_y1) {

}

double Polygon::Perimeter() {

 double l ;

 l = sqrt((x0-x1)*(x0-x1) + (y0-y1)*(y0-y1));

 return l ;

}

Triangle:: Triangle (_x0, _y0, _x1, _y1, _x2, _y2):

 : Polygon(_x0, _y0, _x1, _y1), x2(_x2), y2(_y2) {

}

double Triangle::TwoEdges() {

 double a, b ;

 a = sqrt((x0-x2)*(x0-x2) + (y0-y2)*(y0-y2));

 b = sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));

 return a + b;

}

double Triangle:: OneEdge () {

 double l;

 l= sqrt((x0-x1*(x0-x1) + (y0-y1)*(y0-y1));

 return l;

}

double Triangle::Perimeter() {

 double p ;

 p = Polygon::Perimeter() + TwoEdges();

 return p ;

}

❑ Because the functions Perimeter, OneEdge and TwoEdges are common to all

classes of the hierarchy, but their implementations are specific to each class,

these functions represents virtual functions. Moreover, the functions

TwoEdges and OneEdge cannot be implemented in the class Polygon, these

functions representing pure virtual functions in this class.

❑ In the case of virtual functions, the selection of the effective function that will

be called at a certain moment is automatically realized by the compiler.

❑ In conclusion, the second essential element of the OOP programming

consists of the mechanism of polymorphism (in C++ are used virtual

functions), where the calling of a member function of an object depends of

the type of that object.

❑ For example, in the case of the polygonal figures, the following declarations

and statements:
Polygon* f1 = new Triangle(0,0,0,1,1,0);

Polygon* f2 = new Quadrilater(0,0,0,1,1,0,1,1);

double p1 = f1->Perimeter() ;

double p2 = f2->Perimeter() ;

allow the correct selection of the Perimeter function by the compiler, for each

object.

❑ A similar example in Python

module ‘polygons.py’

from math import sqrt, inf, fabs, pi

class Polygon is abstract because the method area_calc

is not defined

class Polygon:

 def area(self):

 return self.area_calc()

class Point(Polygon):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 # length of the segment [self, p]

 def segment(self, p):

 return sqrt((self.x - p.x) * (self.x - p.x) +

 (self.y - p.y) * (self.y - p.y))

 # the slope of the segment [self, p] with the Ox axis

 def slope(self, p):

 if p.x - self.x == 0:

 return None

 else:

 return (p.y - self.y) / (p.x - self.x)

 def area_calc(self):

 return 0

a segment has two points: Point(x0, y0), and p1(x1, y1)

class Segment(Point):

 def __init__(self, x0, y0, x1, y1):

 Point.__init__(self, x0, y0) # the first point

 self.p1 = Point(x1, y1) # the second point

 # the slope of the segment [Point, p1] with the Ox axis

 self.slope = Point(x0, y0).slope(self.p1)

 # the length of the segment [Point, p1]

 self.length = Point(x0, y0).segment(self.p1)

 # the segment [Point, p1] is perpendicular on Ox axix

 def is_perpend(self, d):

 if (self.slope != None) and (d.slope != None)

 and (self.slope * d.slope == -1):

 return True

 elif (self.slope == None) and (d.slope == 0.0):

 return True

 elif (self.slope == 0.0) and (d.slope == None):

 return True

 else:

 return False

 def area_calc(self):

 return 0

a triangle has 3 segments having the length l1, l2, l3

class Triangle(Polygon):

 def __init__(self, x0, y0, x1, y1, x2, y2):

 self.l1 = Point(x0, y0).segment(Point(x1, y1))

 self.l2 = Point(x1, y1).segment(Point(x2, y2))

 self.l3 = Point(x2, y2).segment(Point(x0, y0))

 # using the Heron’s formula

 def area_calc(self):

 p = (self.l1 + self.l2 + self.l3) / 2

 return sqrt(p * (p-self.l1) * (p-self.l2) *

 (p-self.l3))

a rectangle has 4 points and length

of 2 distinct perpendicular segments

class Rectangle(Polygon):

 def __init__(self, x0, y0, x1, y1, x2, y2, x3, y3):

 # the list of points

 self.rp = [Point(x0, y0), Point(x1, y1),

 Point(x2, y2), Point(x3, y3)]

 # the length of the first segment

 self.l1 = self.rp[0].segment(self.rp[1])

 # the length of the second segment

 self.l2 = self.rp[1].segment(self.rp[2])

 # all 4 segments

 s1 = Segment(x0, y0, x1, y1)

 s2 = Segment(x1, y1, x2, y2)

 s3 = Segment(x2, y2, x3, y3)

 s4 = Segment(x3, y3, x0, y0)

 # all 4 segments must to be perpendicular

 assert (s1.is_perpend(s2) and s2.is_perpend(s3)

 and s3.is_perpend(s4) and s4.is_perpend(s1)),

 'Quadrilateral must be a rectangle'

 # area of a rectangle: a = l1 * l2

 def area_calc(self):

 return self.l1 * self.l2

a square is a particular rectangle, when l1 == l2

class Square(Rectangle):

 def __init__(self, x0, y0, x1, y1, x2, y2, x3, y3):

 Rectangle.__init__(self, x0, y0, x1, y1, x2, y2,

x3, y3)

 # condition to be a square (l1 == l2)

 assert (self.l1 == self.l2),

'Quadrilateral must be a Square'

 def area_calc(self):

 return super().area_calc()

a circle is represented by the center of the circle

and its radius

class Circle(Point):

 def __init__(self, x, y, r):

 # center of the circle (a point)

 Point.__init__(self, x, y)

 # the radius

 self.r = r

 def area_calc(self):

 return pi * self.r * self.r

a triangular right prism is defined by its base

(a triangle) and the length of a perpendicular edge

class Prism(Triangle):

 def __init__(self, x0, y0, x1, y1, x2, y2, h):

 # the base of the prism (a triangle)

 Triangle.__init__(self, x0, y0, x1, y1, x2, y2)

 # the height of the prism

 self.h = h

 # area of the prism

 def area_calc(self):

 return 2 * super().area_calc() + self.h *

 (self.l1 + self.l2 + self.l3)

a cuboid is a rectangular parallelipiped

is defined by its base (a rectangle) and its height

class Cuboid(Rectangle):

 def __init__(self, x0, y0, x1, y1, x2, y2, x3, y3, h):

 # the base of the cuboid (a rectangle)

 Rectangle.__init__(self, x0, y0, x1, y1, x2, y2,

x3, y3)

 # the height of the cuboid

 self.h = h

 # total area of the cuboid

 def area_calc(self):

 return 2 * super().area_calc() + 2 * self.h *

 (self.l1 + self.l2)

a cube is a special cuboid having all sides equals

class Cube(Cuboid):

 def __init__(self, x0, y0, x1, y1, x2, y2, x3, y3, h):

 Cuboid.__init__(self, x0, y0, x1, y1, x2, y2, x3,

y3, h)

 # condition for the sides of the cube

 assert ((self.l1 == self.l2) and (self.l1 == self.h)),

 'Cuboid must be a cube'

 # total area of the cube

 def area_calc(self):

 return 6 * self.l1 * self.l2

a right cylinder is defined by its base (a circle)

and its height

class Cylinder(Circle):

 def __init__(self, x, y, r, h):

 # the base of the cilindre (a circle)

 Circle.__init__(self, x, y, r)

 # the height

 self.h = h

 # total area

 def area_calc(self):

 return 2*super().area_calc() + 2*pi*self.r*self.h

module ‘usepolygon.py’

from polygons import *

L = [Triangle(0, 0, 1, 0, 0, 1),

Rectangle(0, 0, 2, 0, 2, 1, 0, 1),

Square(0, 0, 1, 0, 1, 1, 0, 1),

Circle(0, 0, 1),

Prism(0, 0, 1, 0, 0, 1, 2),

Cuboid(0, 0, 2, 0, 2, 1, 0, 1, 2),

Cube(0, 0, 1, 0, 1, 1, 0, 1, 1),

Cylinder(0, 0, 1, 2)]

for obj in L:

 a = obj.area()

 print(a)

Remark. In Python the polymorphism mechanism is inherent to the language

Polygon

Point Triangl

e

Rectangl

e
Circle

Segmen

t

Prism

Square

Cuboid Cylinde

r

Cube

❑ There are two types of relations:

❑ Inheritance (with blue), a static relation concerning code reuse

❑ Subtyping (with green), a dynamic relation concerning using object at

runtime

❑ Inheritance is similar to the same relation form the C++ language

❑ Polymorphism is inherent in Python due the dynamic typing and dynamic

binding (there is no static binding in Python)

❑ Virtual functions from C++ are replaced by delegate functions (function

area() in the example)

❑ Abstract classes are not defined by some syntactic constructions

❑ An abstract class is a class that contains a method that is not implemented

in the class (function area_calc() in the example)

❑ However, there exists a decorator, called @abstractmethod that can

be used to define abstract methods

E. A short history of object-oriented languages

❑ ALGOL (Algorithmic Language) is a programming language developed in the

late of 1950s, which is the most influential language in all times

❑ Most languages in use today owe something to ALGOL

❑ ALGOL’s syntax and structure directly influenced a large number of other

languages, known as “Algol-like” languages, such as:

o Simula, C, Pascal, and Ada

❑ Indirectly he influenced the most part of imperative (and also a part of

functional) programming languages

❑ Unfortunately, ALGOL has been little used in industry, because of large

companies (IBM, for example), promoted the Fortran language

❑ It was, however, extensively used in academic computer science, and was the

standard language for algorithmic description well into the 1980s and 90s

❑ Example of a procedure in Algol 60 (from Wikipedia):

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);

 value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a,

of size n by m, s transferred to y, and the subscripts

of this element to i and k;

begin

 integer p, q;

 y := 0; i := k := 1;

 for p := 1 step 1 until n do

 for q := 1 step 1 until m do

 if abs(a[p, q]) > y then

 begin y := abs(a[p, q]);

 i := p; k := q

 end

end Absmax

❑ SIMULA (1967) was the first object-oriented language in history

❑ Originally designed for the purpose of simulation

❑ SIMULA was designed as an extension and modification of Algol 60

❑ Some SIMULA features:

o Objects: A SIMULA object is an activation record produced by call to a

class

o Classes: A SIMULA class is a procedure that returns a pointer to its

activation record. The body of a class may initialize the objects it creates

o Dynamic lookup (polymorphism): Operations on an object are selected

from the activation record of that object

o Abstraction: Hiding data was not provided in SIMULA 67 but was added

later and used as the basis for C++

o Subtyping: Objects are typed according to the classes that create them.

Subtyping is determined by class hierarchy

o Inheritance: A SIMULA class may be defined, by class prefixing, as an

extension of a class that has already been defined including the ability to

redefine parts of a class in a subclass

❑ Smalltalk (1972) was the second object-oriented language, designed by Alan

Kay (a visionary computer scientist)

❑ It was inspired by the simplicity of LISP and the classes and objects of

Simula67, but it was a completely new language, with new terminology and

an original syntax

❑ It was written as an operating system for Dynabook, “A Personal Computer for

Children of All Ages” – a concept of Alan Key for a very thin portable

computer (similar, but more complex than a notebook or a tablet PC)

o The Dynabook was never built, simply because it was too far ahead of

technologies in the 1960s and 1970s

o Instead of Dynabook, the Alto computer was developed at Werox PARC

(where Alan Key worked) in 1973, the ancestor of modern PC computers

(having a mouse, a desktop, and a graphical user interface)

▪ All Altos computers were connected to the first local area network

(LAN)

▪ Apple II was released in 1977, and Atari was released in 1981 (without

mouse)

❑ Smalltalk encapsulated all of the pieces related to a modern personal computer,

including many of the features that were desired in the Dynabook.

o Smalltalk systems were the first to have bit-mapped displays, overlapping

windows, menus, icons, and a mouse pointing device.

▪ Microsoft Windows, UNIX X-Windows, and the Macintosh operating

systems all have their roots in Smalltalk

❑ Smalltalk was implemented as a bytecode compiler. Smalltalk code was

actually compiled into a virtual machine language

o This technique was used later in the Java compilers and .NET languages

❑ Smalltalk environments were the first to develop what are now object-oriented

software design patterns. The model–view–controller (MVC) pattern was used

in Smalltalk environments for user interface design.

❑ In Smalltalk everything is an object; even a class. All operations are messages

to objects

❑ Some Smalltalk features:

o Objects: A Smalltalk object is created by a class. At run time, an object

stores its instance variables and a pointer to the instantiating class

o Classes: A Smalltalk class defines variables, class methods, and the

instance methods that are shared by all objects of the class

o Abstraction: Abstraction is provided through protected instance variables.

All methods are public but instance variables are protected

o The type of an object in Smalltalk is its interface, i.e. the set of messages

that can be sent to the object

o Subtyping: Subtyping arises implicitly through relations between the

interfaces of objects. Subtyping depends on the set of messages that are

understood by an object, not on the representation of objects

o Inheritance: Smalltalk subclasses inherit all instance variables and

methods of their superclasses. Methods defined in a superclass may be

redefined in a subclass or deleted

o The run-time structures used for Smalltalk classes and objects support

dynamic lookup (polymorphism)

❑ C (developed in 1972 by Dennis Ritchie) seems to be the second influential

language after ALGOL

o It has influenced almost every programming language that came after it

❑ The C programming language is still a very popular language (according to

Tiobe index, he is ranked in the first or second place since 1989 until now)

❑ In the middle 1980s two different OOP languages have been developed based

on C:

o Objective C (1985) – by adding Smalltalk-style messaging to the C

programming language

o C++ (1982-1985: Bjarne Stroustrup) – by adding OOP features to C, in a

similar way that Simula added OOP features to ALGOL

❑ Objective C:

o Was the main programming language supported by Apple for the macOS,

iOS operating systems

o Use dynamic typing (static typing is optional) and single inheritance

❑ C++:

o Is used in different domains: embedded devices programming, game

programming, and also in most system programming where the large

software systems can be developed

o Use static typing and multiple inheritance

❑ List (List Processor) is another very old (but different from others)

programming language, developed in 1958 at MIT:

o It is a functional programming language, based on lambda calculus

❑ Functional programming and object-oriented programming are two different

paradigms:

o Between 1980s and 2000s there was a growth in the popularity of object-

oriented programming languages

o In the last decade there is an increasing effort to integrate these two

programming paradigms:

▪ Some languages, such as Scala, Clojure and Swift explicitly implement

features from both paradigms

▪ Some OO languages, such as C++, Java, Python and Ruby are

converging to some point

❑ However, the first language that integrate the two programming paradigms is

CLOS (Common Lisp Object System)

o It was developed in the late 1980s

o It is based on the Lisp syntax by adding OO concepts from Smalltalk

❑ Also, in the late 1980s, Eiffel, another OO programming language was

developed:

o It was developed by Eiffel Software (a company founded by Bertrand

Meyer), which contains a detailed treatment of the concepts and theory of

the object technology that led to Eiffel's design

o It is based on two programming languages: ADA and Smalltalk

o The most important contribution of Eiffel to software engineering is

design by contract (DbC), in which assertions, preconditions,

postconditions, and class invariants are employed to help ensure program

correctness

❑ In 1990s several OO programming languages were developed, in response to

the need for rapid application development (RAD) and the opportunity created

by the Internet Age

❑ Python was developed in 1991, as a successor of the ABC language

o It is dynamically typed and garbage-collected and pure object-oriented

o It supports multiple programming paradigms, including procedural,

object-oriented, and functional programming

o Python standard library provides tools for many tasks, such as: Internet

applications, creating graphical user interfaces, using relational

databases, scientific computing, regular expressions, and unit testing

o The Python Package Index (PyPI), the official repository of Python

contains many packages with a wide range of functionality, including:
▪ Graphical user interfaces

▪ Machine learning

▪ Web frameworks

▪ Multimedia

▪ Databases

▪ Networking

▪ Test frameworks

▪ Documentation

▪ System administration

▪ Scientific computing

▪ Text processing

▪ Image processing

o Since 2003, Python has consistently ranked in the top ten most popular

programming languages in the TIOBE Programming Community Index

o Python is not named after the snake. It’s named after the British TV show

Monty Python

❑ Java vas released in 1995 at the Sun Microsystems, as an object-oriented

language (which is not pure OO) by borrowing some ideas from other OO

languages:

o Syntax from C++

o Compiling to a virtual machine from Smalltalk

o Interfaces from Eiffel

❑ Sun Microsystems released Java for providing no-cost run-times on popular

platforms

❑ Major web browsers incorporated the ability to run Java applets within web

pages, and Java quickly became popular

❑ The Java Class Library is the standard library, developed to support

application development in Java, which is controlled by Sun Microsystems in

cooperation with others through the Java Community Process program

❑ The core libraries include:
o IO/NIO

o Networking

o Reflection

o Concurrency

o Generics

o Scripting/Compiler

o Functional programming (Lambda, Streaming)

o Collection libraries that implement data structures

o XML Processing

❑ Since 1999, Python has consistently ranked in the top three most popular

programming languages in the TIOBE Programming Community Index

❑ Ruby was developed in 1995 in Japan, as an interpreted, high-level, general-

purpose programming language

o It supports multiple programming paradigms, including procedural,

object-oriented (pure OO), and functional programming (similar to

Python)

o Ruby was influenced by Perl, Smalltalk, Eiffel, Ada, Basic, and Lisp

o A framework called Ruby on Rails has helped to increase its usage for web

programming

o Actually, Ruby is ranked as 13th in the TIOBE Index

❑ Current trends – OO languages developed after 2000:

o C# - a general-purpose, multi-paradigm programming language

containing: strong typing, imperative, declarative, functional, object-

oriented, and component-oriented programming disciplines

▪ Developed around 2000 by Microsoft as part of its .NET initiative

(designed for the Common Language Infrastructure CLI)

▪ The language is intended for use in developing software components

suitable for deployment in distributed environments

▪ C# was influenced by Java, C++, Eiffel and ADA

▪ Initially, James Gosling, who created Java in 1995, called C# an

"imitation" of Java

▪ However, since 2005, the C# and Java languages have evolved on

divergent trajectories, becoming two very different languages

▪ Since 2004, C# has consistently ranked in the top seven most popular

programming languages in the TIOBE Index

o Kotlin - statically-typed programming language that supports both object-

oriented and functional programming

▪ Kotlin provides similar syntax and concepts from other languages,

including C#, Java, and Scala, among many others

▪ Kotlin was announced as an official Android development language at

Google I/O 2017

▪ Kotlin is ranked as 35th in the TIOBE Index

o Swift is an alternative to the Objective-C language that employs a simpler

syntax

▪ During its introduction, it was described simply as Objective-C without

the C

▪ It was developed by Apple for iOS and macOS operating systems

▪ Swift took language ideas from Objective-C, Rust, Haskell, Ruby,

Python, C#, and other many languages

▪ Swift is ranked as 12th in the TIOBE Index

