
8 Friend classes and functions. Nested classes 
 

 

 

 

The C++ language allows, in addition to the inheritance and composition relations, also other 

methods by which a class can accesses the members of other classes. These methods are friend 

classes and nested classes. Unlike composition and inheritance, in the case of friend classes or 

nested classes the access to class members cannot be done directly, but through some objects of the 

respective classes. 

 

 

8.1 Friend functions and classes 
 

It is necessary in some cases that functions that uses objects of a certain classes to refer its private 

members (private or protected). For example, in the case when the Point class is defined as: 

 
class Point { 

protected: 

  double x, y; 

Point(double a, double b): x(a), y(b) { } 

}; 

 

a function which determines the distance between two points would need the reference to the 

members x and y of the object from the Point class: 

 
double Dist(Point& c, Point& b) { 

  double d = sqrt((a.x-b.x)*(a.x-b.x) + 

(a.y-b.y)*(a.y-b.y); 

  return d; 

} 

 

A solution for this problem would be as the Dist function to be defined as a friend function of the 

Point class, which has access to its private members; 

 
class Point { 

friend double Dist(Point& c, Point& b); 

protected: 

  double x, y; 

public: 

    Point(double a, double b) : x(a), y(b) { } 

}; 

 

An example of using the function Dist is: 

 
void Processing() { 

  Point p1(1, 1), p(2, 2); 

  double d = dist(p1, p2); 

  // ... 

} 

 

 

 



Remarks: 

1) The declaration of a friend function is made in a class where the function is friend and not 

in the function declaration; 

2) The declaration of a friend function will be always visible outside the class, regardless of 

the place where it is declared in the class (the friend function does not belong to the class to 

which it is friend; it is exterior to the class). 

3) The friend function has access at all the members of the friend class, indifferently if they 

are public or not. 

4) A friend function cannot have directly access to the members of its friend class, but only by 

the instances of this class. For example, in the body of Dist function  the members x and y 

can not be directly accessed by its name, so the following statement is incorrect: 

 
d = sqrt(x*x + y*y); 

 

The declaration of a friend function is done by specifying the keyword friend before the function 

declaration. 

 

For adding new friend function to a certain class, the respective class declaration must be 

modified. It results that the declaration of the friend functions must be realized in the design stage 

of the developing cycle of a software application.  

 

Usually the friend functions of a class could be also defined as member functions of the respective 

class, case when they can have direct access to the class members. For example, the Dist function 

can be defined as member function to the class Point: 

 
class Point { 

protected: 

  double x, y; 

public: 

  Point(int a, int b) : x(a), y(b) { } 

  Double Dist(Point& b) { 

    double d = sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y); 

    return d; 

  } 

}; 

 

void Processing() { 

  Point p1(1, 1), p2(2, 4); 

  double d1 = p1.Dist(p2); 

  double d2 = p2.Dist(p1); //the same thing 

  // ... 

} 

 

When it is used the member function variant, such a function can be called as a method of an object 

of the respective class. The difference between the use of Dist function as member function and as 

friend function in this example is a kind of asymmetry in the case of member function. In general, 

when a certain function is regarded as an implementation of a certain operation with two operands 

(a binary operator), the method of friend function can be more natural, because the method of 

member function needs only one explicit parameter (the other operand is the hidden pointer this to 

the current object). 

 

There are situations when is desired as a certain member function of a class to be friend of another 

class. 

 



Example 8.1. The class contorA contains a pointer to an object of a class A and a function which 

counts the reference number to this object. 

 
class A; 

 

class contorA { 

  A *a; 

public: 

  contorA(int k = 0); 

  int increment(); 

}; 

 

class A { 

  int n; 

public: 

  A(int k = 0) { n = k; } 

friend int contorA::increment(); 

}; 

 

int contorA::increment() { return a->n++; } 

contorA::contorA(int k) { a = new A; } 

 

int main() { 

  contorA c; 

  cout << c.increment() << endl; 

  cout << c.increment() << endl; 

  return 0; 

} 

 

Observation. The increment and constructor functions of the class contorA have not been defined 

inline, because A has not been completely defined. 

 

The increment function from contorA class must increment the private member n of the a object, 

which belongs to the class A. From this reason the function has been declared as friend function in 

the A class. The function was prefixed with the class name to which it belongs. 

 

If it desired that more member functions of a certain class A to have access to the private members 

of a class B, the whole class A can be declare as a friend class of the B class. In this case the 

declaration contains only the friend keyword, followed by the class declaration which is friend. 

 

From previous example, the class contorA can be declared as a friend class of the A class. 

 
class A; 

 

class contorA { 

  A *a; 

public: 

  contorA(int k = 0); 

  int increment(); 

}; 

 

class A { 

  int n; 

public: 

friend class contorA; 

  A(int k = 0) { n = k; } 



}; 

 

Remark. The relation of friendship it is not a biunivocal relation, in the way that the declaration: 

 
friend class contorA; 

 

does not mean that the members of the class A have access to the private members of the class 

contorA. 

 

An intuitive example of using friend classes is the rewriting the node and list classes from the 

definition of a simple linear linked list. Because the functions from the list class access the private 

member next of node class, the list class can be declared a friend class of node. 

 
class list; 

 

class node { 

friend class list; 

  int val; 

  node* next; 

public: 

  node(int v, node* p = 0) { val = v; next = p; } 

  ~node() { next =0; } 

  void Add(int v) {  

    node* q = new node(v); 

    next = q; 

  } 

  int Val() const { return val; } 

  void Print() const { cout << val << endl; } 

}; 

class list { 

  node* first; 

  void Delete(); 

  void Copy(node* p); 

public: 

  list() { first = 0; } 

  list(list& l) { first = 0; Copy(l.first); } 

  ~list() { Delete(); first = 0; } 

  //adds an element at the end of the list 

  void AddLast(int v); 

  void Print() const { 

    for (node* p=first; p; p=p->next) 

      p->Print(); 

  } 

  int VidList() const { return first == 0; } 

}; 

 

void list::AddLast(int v) { 

  if (!first) 

    first = new node(v); 

  else { 

    for (node* q=first; q->next; q=q->next); 

    q->Add(v); 

  } 

} 

 

void list::Copy(node* p) { 

  first = 0; 



  for (node* q=p; q; q=q->next) 

    AddLast(q->val); 

} 

   

void list::Delete() { 

  node *p = first, *q; 

  while (p) { 

    q = p; 

    p = p->next; 

    delete q; 

  } 

} 

   

int main() { 

  list l; 

  l.AddLast(7); 

  l.AddLast(5); 

  l.AddLast(9); 

  l.Print(); 

  return 0; 

} 

 

Remark. There is a distinction between a class friend to another class and a derived class from 

another class. For example: 

 
class D1 { 

  // ... 

}; 

 

class B1 { 

friend class D1; 

  // ... 

}; 

 

class B { 

  // ... 

}; 

 

class D: public B { 

  // ... 

}; 

 

void Processing() { 

  D1 d1; 

  D d; 

  // ... 

} 

 

The object d of the class D contains as members all the members of the class B, at which are added 

the supplementary members owned by class D. The object d1 of the class D1 contains (unlike the d 

object), only the members owned by class D1, not the ones of class B1 (the declaration friend 

class D1;). So, the member functions of the class D1 can access private members of the class B1 

only by using the objects of B1. 

 

 

 



 

 

8.2 Nested classes 
 

The presence of several friend classes or functions in a class hierarchy denotes an inefficient design 

of the hierarchy. In these cases is wanted a hierarchy design which minimizes the appearance of 

friend functions and classes: the redefinition of friend functions as member functions, and the 

redefinition of friend classes as nested classes.  

 

This observation is justified because the friend functions and classes do not represent a specific 

characteristic of a pure object-oriented language, but only a compromise for the pragmatism of 

developing applications. 

 

Example 8.3. The class list can be defined in a pure object-oriented style as follows (the 

implementations of the functions from the class list are identical as in the previous example): 

 
class list { 

  struct node { 

    int val; 

    node* next; 

    node(int v, node*p = 0): val(v), next(p) { } 

    ~node() { next = 0; } 

    void Add(int v) {  

      node* q = new node(v); 

      next = q; 

    } 

    void Print() const { cout << val << endl; } 

  }; 

  node *first; 

  void Delete(); 

  void Copy(node* p); 

public: 

  list() { first = 0; } 

  list(list& l) { first = 0; Copy(l.first); } 

  ~list() { Delete(); first = 0; } 

  void Add(int v); //adds an elem. At the end of the //list 

  void Print() const { 

    for (node* p=first; p; p=p->next) 

      p->Print(); 

  } 

  int VidList() const { return first == 0; } 

}; 

 

 

The class node from the previous example is defined inside the list class, in its private section.  

 

A nested class defined inside another class can be considered as a member definition of the 

respective class and can be defined in any part of the respective class: in the private, protected or 

public section. Its accessibility depends of the class section in which it was defined: 

- a class defined in the public section of a class is visible outside the respective class; 

- a class defined in the protected section is visible only in the classes derived from the 

respective class; 

- a class defined in the private section is visible only inside the class to which it 

belongs. 



 

The accessibility of members of a nested class respects the general rules of accessibility of the class 

members. In conclusion, the private members from a class B, nested in a class A, cannot be accessed 

in the class A, regardless of the section where the class B has been defined. In the case when it is 

desired as the whole class A to have access to the private members of the class B, or the class B to 

have access at the private members of the class A, the classes can be defined as friend. The 

declaration of friend class for a nested class can precede or succeed the class definition. 

 

Example 8.4. The classes B and C are defined inside the class A, so each of them have access to the 

private members of the other classes. 

 
class A { 

  int n; 

 

  class B { 

  friend class A; 

    int k; 

  public: 

    B(int n = 0): k(n) { } 

    int K() const { return k; } 

  }; 

  friend class B; 

 

 public: 

  class C { 

  friend class A; 

    int l; 

  public: 

    C(int n = 0): l(n) { } 

    int L() const { return l; } 

  }; 

  friend class C; 

  

   A(int a): n(a) { } 

   int N() const { return n; } 

 

   // ... 

 }; 

 

The accessibility of a nested class concerns only the class name regarded as a data type and not its 

members. The access to the members of the nested class can be realized by an instance object, as in 

the case of the friend class. 

 

In the previous example of the list class, the node class is not directly accessed by the member 

functions of the list class; for this it is used a data member, first, which is a pointer to the node class. 

 

The implementation of functions (that are not inline) of a nested class can be made outside the class 

where it is defined as nested, by using the resolution operator. 

 

For example, in the case when the Add function from the node class is be defined as follows: 

 
class list { 

  struct node { 

    int val; 

    node* next; 



    node(int v, node*p = 0): val(v), next(p) { } 

    ~node() { next = 0; } 

    void Add(int v); 

    void Print() const { cout << val << endl; } 

  }; 

  node *first; 

  // ... 

}; 

 

Then its implementation in the outside of the list class can be: 

 
void list::node::Add(int v) {  

  node* q = new node(v); 

  next = q; 

} 

 

In the case when a nested class has static data, their access can be realized also with the resolution 

operator. 

 

Example 8.5. The example with classes A, B and C is used again, by using the static data and 

functions: 

 
class A { 

  int n; 

  static int v; 

 

  class B { 

  friend class A; 

    int k; 

    static int v; 

  public: 

    B(int n = 0): k(n) { } 

    int K() const { return k; } 

    static void SetV(int n) { 

      B::v = n; 

    } 

    static void SetAV(int n) { 

      A::v = n; 

    } 

  }; 

  friend class B; 

 

public: 

 

  class C { 

  friend class A; 

    int l; 

    static int v; 

  public: 

    C(int n = 0): l(n) { } 

    int L() const { return l; } 

    static void SetV(int n) { 

      C::v = n; 

    } 

    static void SetAV(int n) { 

      A::v = n; 

    } 



  }; 

  friend class C; 

  

  A(int a): n(a) { } 

  int N() const { return n; } 

  static void SetV(int a) { v = a; } 

 

  // ... 

}; 

 

int A::v = 0; 

int A::B::v = 0; 

int A::C::v = 0; 

 

int main() { 

  A::C::SetV(1); 

  A::C::SetAV(3); 

  A::SetV(0); 

  // ... 

} 

 

In the case when a class has several nested classes, the definition order is, in general, not restricted. 

The exceptions are those nested classes which are dependent one to each other, case when they 

must be declared before the definition. 

 

The enumerations, even they do not represent classes, are data types and they can be defined inside 

other classes. The enumeration name and also the elements values can be used in classes inside 

which they have been defined, and in the case when they are defined in a public section, they can be 

used also outside the classes. 

 

Example 8.6. The class Clock class allows the display of the current hour of a clock for different 

predefined time zones: LondonHour, ParisHour, BucharestHour, MoskowHour. A clock is 

considered to be fixed at the Bucharest hour. 

 
#include <iostream> 

using namespace std; 

 

class clock { 

  int hour, min, sec; 

public: 

  enum HourDisplay { 

    LondonHour, 

    ParisHour, 

    BucharestHour, 

    MoskowHour 

  }; 

  clock(int o = 0, int m = 0, int s = 0): 

 hour(o), min(m), sec(s) { } 

  void DisplayHour(HourDisplay h) { 

    cout << “hour “ << hour + h - BucharestHour; 

    cout << “: min “ << min; 

    cout << “: sec “ << sec << endl; 

  } 

}; 

 

int main() { 



  clock c(14, 20, 50); 

  c.DisplayHour(clock::BucharestHour); 

  c.DisplayHour(clock::ParisHour); 

  c.DisplayHour(clock::LondonHour); 

  c.DisplayHour(clock::MoskowHour); 

  return 0; 

} 


