
4. Constructors and destructors

The creation and the destruction of the objects represent an important operation in order to

realize for safety and stable programs. The programmer which designs a set of class related to

a program must take in consideration all the possibilities in which the class instances can be

created, initialized, and destroyed, in order to write a simple and safety code.

The constructors and destructors are special member functions of the classes which are

responsible for the actions as: object initialization of the data members of the class instances,

object copying, and memory deallocation for the additional allocated memory. Because of

their particularities, these functions present characteristics of the common member functions

of the classes, but they have also in addition some specific properties.

The first specific characteristic of these functions is represented by their name. In the standard

C++ language it is used the Stroustrup solution in which the constructors are named by the

class name where they belong, and the destructors are named by the class name preceded by

the ‘~’ character. This solution is natural, because the constructors and the destructors are

called in automatic mode by the compiler and their name must be predetermined.

Another particularity is that if a class does not contain in its declaration constructors and/or

destructors, some of these functions are automate generated by the compiler.

The constructors and destructors do not return values, not even of the void type, which made

them special by comparing with the others functions; otherwise the compiler should know

what to do with the returned value.

4.1 Constructors

There are two distinct situations when the class constructors are called: (a) when an object,

instance of a class is initialized and some of data members of the newly created object are

initialized with certain values, or (b) when a newly created object is initialized with the values

of the data members of another already existent object from the same class.

Remark. The last variant should not be confused with the case of an assigning statement; as

in the C language, the initialization of an object can realized at its definition:

// i,j variable definition and j variable initialization

int i, j = 3;

// assignment operator

i = 4;

In fact the notions of defining and initializing an object are related one with another and they

can not exist separately.

Example 4.1. The class time allows the determination of a time interval passed from an initial

date of the form year-month-day-hour-minute-second, to the current date, considering the

time measured in seconds.

class time {

 int hour, minute, second;

 double t;

 static int hour_0, minute_0, second_0;

 void SetTime() {

 t = 3600 * (hour - hour_0) +

60 * (minute - minute_0) + second - second_0;

 }

public:

 time (int Hour = 0, int Minute = 0, int Second = 0)

 {

 hour = Hour;

 minute = Minute;

 second = Second;

 }

 double GetTime() {

 SetTime();

 return t;

 }

};

int time::hour_0 = 0;

int time::minute_0 = 0;

int time::second_0 = 0;

void Problem() {

 time m1(7, 3, 24);

 time m2(20, 4, 12);

 cout << ”t1= “ << m1.GetTimp() << endl;

 cout << ”t2= “ << m2.GetTimp() << endl;

}

// ...

The creation of an object has two distinct parts: the allocation by the compiler of a

uninitialized memory block having an appropriate size, and the calling of a constructor of

respective object class. The allocation operation is transparent to the programmer. The

memory zone where the memory is allocated depends on the mode of creating the object (in

the static data zone, stack zone, or in the heap zone).

The role of a constructor is to initialize certain data members of the object. To perform this

action, the memory address of allocated zone for the object is passed to the constructor by

using the hidden parameter this.

In the previous example there exist two implicit calls at the constructor of the class time, what

means in fact that the compiler inserted in the place of the two definitions the following calls:

m1.time(&m1, 7, 3, 24);

m2.time(&m2, 20, 4, 12);

When an object is defined as a global variable defined outside any function, the constructor of

such an object is called before the execution of the main function.

Related to the memory allocation for a newly object, we distinguish three types of allocation:

a) in the static allocation zone, for the external objects defined outside any function of a

program; in this case the constructor is called before the main function, and the lifetime

of the object corresponds to the execution time of the program;

b) in the stack zone of the program, in the case of local objects defined inside the blocks; the

allocation and the constructor call is performed when the program execution reaches the

respective object definition; the lifetime of such an object is the time for which the

defined block the object is active on the stack;

c) in the heap zone of the program, in the case of dynamic created objects by using the new

operator; the lifetime of such an object corresponds to the time between the consecutive

call of the pair operators new and delete, related to the same pointer.

In the first two cases the object destructors are automatic called by the compiler, while in the

last case the destructor is implicitly called with the help of delete operator. In the third case,

the call of the constructor for the dynamic created object is automatic performed by the

compiler from the actions performed by the new operator. For example, the object

initialization of a dynamic object of the time class can be realized as follows:

// pointer declaration; no ‘time’ object is created

time *pt;

// the creation and calling of the ‘time’ constructor

pt = new time (7, 3, 1);

or:

// both pointer declaration and object creation

time *pt = new time (7, 3, 1);

All the new operator advantages referring to classic functions of allocation memory from the

C language specified in chapter two are valid also in the case of dynamic allocation for

objects.

4.2 Constructor types

There is also one situation when objects are implicitly created by the compiler, in the case of

function call, when: (a) the actual values of parameters are passed to the called function, and

(b) the calculated value of the called function is returned to the calling function, by using the

return statement.

The parameter passing is performed in the C++ language in two distinct ways: by value and

by reference. The passing-by-reference does not create supplementary objects, while the

passing-by-value involves the passing of a copy of the actual parameter of the calling function

to the formal parameter of the called. In other words, a new (temporary) object is created,

which is a copy of the object representing the actual parameter, and this object is used as the

initializing value for the corresponding formal parameter.

The inverse operation, returning from a called function, involves the creation of a new object,

which represents the returned value by the function.

In the cases described above (but not only in these cases), another type of constructor is used,

which is called copy constructor. This is called any time an object creation imposes its

initialization with another object from the same class.

In general, the constructors can be divided in the following categories:

a) general constructors;

b) default constructors;

c) copy constructors;

d) conversion constructors.

Usually a class may have more than one different constructor, which allows the creation of

objects in different cases.

4.2.1. General constructors

The general constructors are constructors that have at least one argument, which is not a

reference at the respective class type, the argument values being used for initialization of the

data members of the created object. The great majority of constructors from the previous

example have been general constructors.

Denoting with X the current class name and with T1, T2, …, etc., the data types of the

arguments, the declaration of general constructor has the following form:

X(T1, T2, /*...*/);

Because the constructors are C++ language functions, all the specific properties of functions

are valid in the case of constructors. For example, it is allowed for these functions to have

parameters with default values (a useful way, which increases the efficiency of the class

design and implementation).

The constructor of the class time is an example of parameter with implicit values for

parameters. The next definition creates three objects of time type:

time o1(7, 3, 2);

time o2(7, 3);

 time o3;

Remark. In the case when a general constructor has default values for arguments, these

values must be specified in the class definition and not in the implementation part.

4.2.2 Default constructors

Default constructors do not have arguments, having the following form:

X (void);

for a class having the name X.

Default constructors, as the copy constructors, are the only constructors that can be automatic

generated by the compiler in the case when a class does not have any constructor.

Example 4.2:

class time {

 // ...

public:

 time();

 // ...

};

time::time() {

 cout << ”Fill in with values for hour, minute, second: “;

 cin >> hour >> min >> sec;

}

void processing() {

 // ...

 time t;

 // ...

}

Remarks:

1. The class constructors can be overloaded.

2. A general constructor with all the arguments having default values it is not a implicit

constructor.

3. The compiler does not generate a default constructor for a class that has at least one

other constructor.

Because a default constructor and a general one with default values for all parameters are

called with the same syntax, they do not have to be defined together in the same class.

The next sequence contains an error related to the definition of the constructors:

class time {

 // ...

public:

 time(int h = 0, int m = 0, int s = 0);

 time();

 // ...

};

because the next definition is not clear:

time t;

A special attention is imposed for the classes having no constructor (not even one), because

the default generated constructor by the compiler do not perform any member initializing.

Example 4.3. The next sequence has an error, because the s data member is not initialized at

the creation of the String class objects.

#define MaxString 100

class String {

 char s[MaxString + 1];

public:

 void set(const char str[]);

 const char* get() { return s; }

};

// ...

int main() {

 String s1; // ‘s’ it is not initialized

 cout << s1.get() << endl; //memory access error!!

 // ...

}

A correct variant of the precedent sequence is writing a default constructor, which creates an

empty string:

#define MaxString 100

class String {

 char s[MaxString + 1];

public:

 String() { s[0] = ‘\0’; }

 void set(const char str[]);

 const char* get();

};

Another used utilization of the default constructors refers the initialization of the array of

objects. When a program contains a definition of an array of objects belonging to a certain

class, if the array is not explicit initialized, for each component of the array the default

constructor of the respective class is automatic called by the compiler.

Example 4.4. The next program:

#include <iostream>

using namespace std;

unsigned int n = 0;

class A {

public:

 A() { cout << ”Constructor for A object” << ++n << endl; }

};

A v[7];

int main() { return 0; }

generates the following output:

Constructor for A1 object

Constructor for A2 object

Constructor for A3 object

Constructor for A4 object

Constructor for A5 object

Constructor for A6 object

Constructor for A7 object

Remark. An important attention is imposed when a class has at least one constructor, but

none constructor is a default constructor. In this case the compiler will not generate a default

constructor for this class. So, when it is needed a default constructor (as in the precedent

example), the compiler will generate an error.

Example 4.5. The next program will generate an error:

#include <iostream>

using namespace std;

class A {

public:

 A(char *str)

 {

 cout <<” A object” << ” and ” << str << “ string “ << endl;

 }

};

//…

A a;

4.2.3 Copy-constructors

The copy-constructors represent an important class of constructors. In the case when into a

class declaration it is not specified any copy-constructor, the compiler will automatically

generate such a constructor.

The role of such a constructor can be judged by analogy with initialization when defining

variable. For example, the definition:
int k = 3;

involves to two distinct actions: the allocation of a memory zone for the variable k, and also

the initialization of the respective memory zone with the value 3.

In a similar way an object of a class can be initialized with the date members of another

created object belonging to the same class. For example:

time t(1, 0, 0);

 time t1 = t;

In the above case, initializing of the t1 object is performed by copying values of the data

members of the t object by using the copy-constructor:

class time {

 // ...

public:

 time(const time& t) {

 hour = t.hour;

 min = t.min;

 sec = t.sec;

 }

 // ...

};

Remarks:

1. Always, the first argument of a copy-constructor must be a reference to an object of

the current class, or a reference to a constant object of the current class.

2. In the case when a copy-constructor has in addition other parameters, all these

parameters must have default values; if this is not the case we have a general

constructor. This restriction is due to the syntax of the call of a copy-constructor:

class object1 = object2 ;

Example 4.6. In the next sequence, at the initialization of the x2 object with the values of the

x1 object cannot be specified other initializing parameters.

class X {

 // ...

 int a;

public:

 X(){ a = 0; }

 X(X& x, int k = 0) {

 a = x.a;

 // ...

 }

 // ...

};

// ...

X x1;

X x2 = x1;

X x3(x2, 5);

// ...

A copy-constructor generated by a compiler, usually, will do a member by member copy of

the data members of the object. In the case of time class, the copy-constructor generated

automatically by the constructor is identical with the one explicit defined in the code.

There are cases when a copy-constructor, implicitly generated by the compiler it is not

sufficient for a correct initializing of the current object, especially in the cases when exists

pointer type member data, or certain member data are objects of other classes.

Example 4.7 The class list implements a simple single linked list, and the class node

implements the structure of the elements of the list.

struct node {

 int val;

 node* next;

 node() {val = 0; next = 0;}

 node(int v, node* n = 0) {

 val = v;

 next = n;

 }

 // copy-constructor implicitly generated

 ~node(){ next = 0; }

 void Add (int); // adds a node after the current node

 void Print() const { cout << val << endl; }

 // ...

};

struct list {

 node* first;

 void Copy(list& l);

 void Delete();

 list() { first = 0; }

 list(list&);

 ~list();

 list& operator=(list&);

 node* Last() const;

 void Add(int); // adds an element at the end of the list

void Print() const;

 // ...

};

void node::Add(int k) {

 node* p = new node(k);

 next = p;

};

void list::Copy (list& l) {

 node* p = new node(l.first->val);

 first = p;

 for (node*q=p->next; p; p=p->next)

 Last()->Add(q->val);

}

node* list::Last() const {

 node* p;

 for(p=first; p->next; p=p->next);

 return p;

}

void list::Add(int k) {

 if (first)

 Last()->Add(k);

 else {

 node *p = new node(k);

 first = p;

 }

}

void list::Print() const {

 for (node* p=first; p; p=p->next)

 p->Print();

}

void list::Delete() {

 // will be further implemented (to destructors)

}

list::list(list& l) {

 Copy (l);

}

list::~list() {

 Delete();

 first = 0;

}

list& list::operator=(list& l) {

 if(&l != this) {

 Delete();

 Copy(l);

 }

 return *this;

}

// ...

Remark. A copy-constructor of a class X must have as parameter a reference to an object of X

class (having the type X&) or to a class itself (a parameter of the X type).

A copy-constructor is not called only at object initialization with values of other objects, but

also in the case of parameter passing mechanism at the function call.

In the case of passing-by-value, a temporary copy of the object which is actual parameter is

created, which is then passed to the corresponding formal parameter in the called function.

When the called function returns to the calling function by using the return statement, the

value that represents the returned object is passed back to the calling function by returning a

copy of that object (so another object is created by the help of the copy-constructor).

Example 4.8. A function which creates a new list formed from the first and the last element

of an existent list.

list FirstLast (list l) {

 list l1;

 l1.Add(l.first->val);

 l1.Add(l.Last()->val);

 return l1;

}

void Processing() {

 list l1, l2;

 l1.Add(3);

 l1.Add(7);

 l2 = FirstLast(l2);

 // ...

}

When the function FirstLast is called, the copy-constructor for the l parameter is called,

which has as parameter a reference of the l2 object. This temporary object will be destroyed

after the exit from the FirstLast function.

The statement return has the following effect: the automatic creation of an additional object

of the type list by copying the object l1. This new created object represents the object which

will be returned to the Processing function and which is taken by the assignment operator.

4.2.4 Conversion constructors

A conversion constructor is usually a constructor with only one argument (as the copy-

constructor), but its type is different to the current class. In the case when exists more

parameters, these parameters must be all with default values (in order to be considered as a

conversion constructor).

For example, the second constructor of node class from the previous example is a conversion

constructor. So, a general constructor is considered to be either a constructor with all the

parameters with default values, or a constructor having at least two parameters with no default

values.

The conversion constructors are frequently used by the compiler for doing the default

conversion of data types. Usually, any time when an operand from an expression does not

respect the data type of the respective expression, an automatic conversion of the operand

type to the expression type is tried. For example, for predefined types, in the next expression a

conversion from int to double is performed:
 int n = 3;

 double x, y = 2.5;

 x = y + n;

A similar conversion is performed also for objects; the compiler is trying to find a appropriate

conversion constructor.

Example 4.9. A conversion constructor for the previous String class is defined:

#include <string>

#include <iostream>

using namespace std;

#define MaxString 100

class String {

 char s[MaxString + 1];

public:

 String() { s[0] = '\0'; }

 // conversion char* -> String

 String(const char str[]) { strcpy(s, str); }

 void set(const char str[]);

 const char* get() { return s; }

};

// ...

void f(String s) { cout << s.get() << endl; }

int main() {

 String s1;

 f(s1); // copy constructor

 f("abc"); // conversion constructor

 // ...

}

At the second call of the function f, the conversion constructor is used to convert the ‘abc’

string to an object of the class String, which will be passed as parameter. At the first call of f

the copy-constructor is used.

4.3 Destructors

The destructors are used to free the additional memory zones occupied by the members of

certain objects, before freeing the memory for the respective object. As in case of

constructors, the deallocation of the memory of an object does not represent an action of the

destructor.

The destructor is used usually in the case when objects use dynamic allocation for certain data

members of them. In the case when a class does not contain an explicit definition of a

destructor, the compiler will implicitly generate a destructor for it.

The destructors, unlike constructors, cannot have arguments. In addition, the destructors

cannot be overloaded; each class must have exactly one destructor.

The destructor call for an object, when it does not have allocated a dynamic memory zone (it

was not allocated by using the new operator), is performed automatically by the compiler: (a)

for local objects defined inside the blocks, the destructor is called at the exit from the current

block where the object where defined, and (2) for global objects defined outside any function,

the destructors are called after the exit from the main function, or when it is explicit called by

the function exit.

Example 4.10.

#include <iostream>

using namespace std;

class X {

 int k;

public:

 X(int i) {

 k = i;

 cout << ”x() for ” << k << endl;

 }

 ~X() { cout << ”~x() for “ << k << endl; }

};

X ob1(5);

void f() {

 cout << ”starts the function f” << endl;

 static X ob2(7);

 X ob3(9);

 Cout << ”finishes the function f” << endl;

}

int main() {

 cout << ”starts the main function” << endl;

 X ob4(11);

 f();

 cout << ”finishes the main function” << endl;

 return 0;

}

The program execution generates the following sequences:

x() for 5

starts the main function

x() for 11

starts the function f

x() for 7

x() for 9

finishes the function f

~x() for 9

finishes the main function

~x() for 11

~x() for 7

~x() for 5

From the previous example it can be seen that in the case when there are several elements to

be destroyed, the destructors are called in reverse order as for constructors.

Also, the constructors for a local static object is called at the first meeting with the object

definition, but its destructor is called after the exit from the main function (which corresponds

to the lifetime rule for static object).

In the next example it is observed the constructors and destructors call in the case of pass-by-

value of the objects as arguments in the function call.

Example 4.11. A class which counters its object instances:

#include <iostream>

using namespace std;

class Contor {

 char c;

 static int contor;

public:

 void Print()

 { cout << "object " << c << " contor " << contor << endl; }

 Contor(const char& ch) {

 c = ch;

 ++contor;

 cout << "Conversion constructor: ";

 Print();

 }

 Contor(const Contor& h) {

 c = h.c;

 ++contor;

 cout << "Copy-constructor: ";

 Print();

 }

 ~Contor() {

 --contor;

 cout << "Destructor: ";

 Print();

 }

};

int Contor::contor = 0;

Contor f(Contor x) {

 cout << "Starts the f function” << endl;

 cout << "Finishes the f function" << endl;

 return x;

 }

int main() {

 Contor o1('a');

 cout << "Before the f call with return value" << endl;

 Contor o2 = f(o1);

 cout << "After the f call" << endl;

 cout << "Before the f call without return value" << endl;

 f(o1);

 cout << "After the f call without return value" << endl;

 return 0;

}

Program output:

Conversion constructor: contor 1 object

Before f call with return value

Copy-constructor: contor 2 object

f function starts

f function finishes

Copy-constructor: contor 3 object

Destructor: contor 2 object

After the f call with return value

Before the f call without return value

Copy-constructor: contor 3 object

f function starts

f function finishes

Copy-constructor : contor 4 object

Destructor : contor 3 object

Destructor : contor 2 object

After the f call without return value

Destructor : contor 1 object

Destructor : contor 0 object

It is observed that the initialization of the argument x of the function f is done with the help of

the copy-constructor. The x parameter becomes a temporary object local to the function and it

will be destroyed after the function execution finishes and it returns to the main function.

The evaluation of the expression related the statement return generates a second temporary

object (the value which must be returned) which is created with the help of copy-constructor.

In the case when the function returns a value, this object is not destroyed (it representing in

fact the o2 object from main function). In the case when the function does not return any

value, this object is destroyed after the function call and before the returning to the main

function (at the second call there exist two destructors successively called, one for the

temporary object and another for the returned value).

In the case of using pointers, the constructors and destructors must be explicit called with the

help of new and delete operators.

Remarks:

1. Even if a pointer exits from his scope, if the delete operator is not called, the

associated object to the pointer will not be destroyed (the destructor is not implicit

called).

2. In the case when at the end of the program execution there are remained objects

allocated in the heap zone, the compiler forces the destructor call for these objects

after the exit from the main function.

Example 4.12. The destructor for list class from the previous example:

struct list {

 node* first;

 void Copy (list& l);

 void Delete();

 list() { first = 0; }

 list(list&);

 ~list();

 // ...

};

void list::Delete() {

 for(node* p=first; p ;) {

 node*q = p->next;

 delete p;

 p = q;

 }

}

list::~list() {

 Delete();

 first = 0;

}

void Processing() {

 list* l1 = new list;

 l1->Add(3);

 l1->Add(7);

 l1->Print() ;

 // ...

 delete l1;

 // ...

}

