
3. Defining and using classes

As it was said in the previous chapter, the notion of class represents a fundamental element

for the data abstraction paradigm, and it is imported into the object oriented programming

paradigm as a basic element.

The class can be seen as an extension of the C language structure, being the syntactic way for

defining new data types. There are important differences between struct, union, and

class. These diffrences are related, in general, to the rights of accessing the members, and to

the possibility of clas derivation.

A class represents, conceptually speaking, the common properties of a collection of related

objects, which justify the choice of the name class for this construction. The objects which

belong to a class are called instances of the class or objects. So, a class can be seen as a data

type represented by the set of all its instances.

The compiler treats an object as any variable: a data storage zone, whose memory address is

unique. In this zone there are stored the current values of the data members corresponding to

the respective object, but in addition the compiler allows the member functions of the class to

operate over these values.

A program that uses object oriented programming paradigm involves both the definition of

the used classes, and also the declaration and the utilization of the instance of those classes

that evolves by passing messages between them.

The definition of a class has two distinct parts: the class declaration and the class

implementation. Usually, the declaration of a class is separated by the implementation, and it

is described in a header file.

The declaration part of a class must specify the the class name (and the classes from where

the class is derived, if necessary) and also the components or members of the respective class.

Unlike the C language, in the C++ language the components of a class (or structure or union)

can be data (data type members), or functions (function type members).

Example 3.1. The structure of a simple program which uses a stack class defining a stack of

characters can be the following:

// stack.h file- class declaration

 class stack {

 int dim ; //member data

 char *buff ; //member data

 public :

 stack(int) ; // constructor function

 ~stack() ; // destructor function

 void push(char) ; // member function

 char& pop() ; // member function

 } ;

// stack.cpp file – class implementation

 stack::stack(int n)

 {

 // constructor code

 }

 stack::~stack(int n)

 {

 // destructor code

 }

 void stack::push(char c)

 {

 // push function code

 }

 char& stack::pop()

 {

 // pop function code

 }

 // main.cpp file – class utilization

 #include <iostring>

 using namespace std ;

 int main() {

 //the objects declaration

 stack st1(100), st2(50) ;

 //stack objects utilization

 st1.push(‘a’) ;

 // ...

 }

The using of a class in an object-oriented application involves to create a set of objects, and to

pass some messages between these objects. The passing mechanism and message receiving

to/from objects is represented by the call of the member functions.

3.1 Class declaration

The syntax of the class declaration:

<class declaration> ::= <class header> [<member declaration>] ;

<class header> ::= <class specifier> <class name>

[: <base class> {, < base class>}*]

<member declaration> ::= ‘{‘ {<specific member>}* ’}’

<class specifier> ::= struct | class

<base class> ::= [<class modifier access> :]

<class name>

<specific member > ::= [<member modifier access> :]

< member declaration >

The class heading contains mandatory the class name and the class specifier, which can be

struct or class. It is possible to be also union, but in this case the class can not be used in

the inheritance mechanism.

A class can be derived from one or more classes, which called base classes for the current

class. In the case when the class declared is derived from other classes, this fact must be

specified by specifying their names and their access types. The default acces type for class

is private, and for struct the access type is public. The notion of the access type of the base

classes will be discussed later, when discussing the inheritance mechanism.

One can observe from the previous syntax that the member declaration of a class is optional;

in this case it is an uncomplete class declaration. This kind of declaration is usually used when

the classes are defined recursively. Of course before declaring an instance object of a class, it

first must be completely declared.

Example of an incomplete declaration. Each of the classes ClA and ClB uses a pointer to the

object of the other class (the ClB class can not use an object, because ClA has not been define

yet).

struct ClA ;

 struct ClB

 {

 // ...

 ClA *a ;

 // ...

 } ;

 struct ClA

 {

 // ...

 ClB *b ;

 // ...

 } ;

The declaration of class members (data or functions) is made as in the C language (for

variables or functions). There are two exceptions representing two special categories of

function members, called constructors and destructors (will be detailed later).

The declaration of a class member can be preceded, optionally, by an access modifier of the

respective member (that is different from the access modifier of a base class). This access

modifier can be private, protected or public. The access modifier for a class member

specifies the way in which the respective member can be seen outside the class. A public

member is visible outside, a private member is inaccessible, and a protected member

can be accessed only in a class derived from the respective class with the public access

modifier. So, all protected members are inaccessible outside, not taking in consideration the

public derived classes. The protected type it will be discussed later.

Remark. An access modifier affects the accessibility of all declared member after this in the

current class, until another access modifier is encountered. If the first declared member of

class does not have specified an access modifier, then, by default this is private for class and

public for struct.

Example 3.2. The polygon class stores pointers to the polygon vertices (not the vertex

coordinates):

 struct point {

 double x, y ;

 point double x0=0, double y0=0)

 { x = x0; y = y0; }

 } ;

 class polygon {

 //private members

 int nr_vertices ;

 point **vertices ;

 double area, perimeter ;

 void ComputePerimeter() ;

 void AdjustArea() ;

 public :

 //public members

 polygon() ;

 ~polygon() ;

 int NrVertices() const { return nr_vertices ; }

 void AddVertex (point*) ;

 point* operator[](int) ;

 double Area() const { return area; }

 double Perimeter() const { return perimeter; }

 } ;

Public members of a class can be accessed outside of the class and they represent the interface

of that class (the way the class communicates with the exterior). The private members are

local to the respective class.

The scope of the members of a class is represented by the class definition. This allows

defining members in different classes with the same name, which represent different members

(variables or functions).

The member functions are usually only declared in a class declarations. But, as seen in the

previous example (the functions NrVertexes, Area and Perimeter), some simple functions can

be both declared and implemented inside the declaration part of a class. These functions

implemented inside the declaration of a class represent inline functions. Because the inline

functions are expanded at compilation, their part must contain simple and small statements.

The objects of a class can be declared as constants, as other variables in a C program. In this

case a problem can appear when there are called member functions of a constant object that

can modify other members of the respective objects. The C++ language allows for a constant

object to call only constant member functions of the class. A constant member function is

specified in the class declaration with the keyword const specified after the function header.

Such a function must not modify the member data values of the class from where it belongs

(this fact is verified by the compiler).

Example 3.3.:

 class circle {

 double xc, yc ;

 double r ;

 public :

 circle(double a, double b, double c)

 { xc = a ; yc = b ; r = c ;}

 double GetXc () const { return xc ; }

 double GetYc () const { return yc ; }

 double GetR() const { return r ; }

 void Translate(double dx, double dy)

{ xc += dx ; yc += dy ; }

 } ;

Circle class utilization:

 Circle c1(0, 0, 10) ;

 const circle c2(8, 7, 5) ;

 c1.Translate(2, 3) ; // correct

 c2.Translate(2, 3) ; // incorrect

 double x = c2.GetXc () ; // correct

In a similar way to the constant objects, a C++ program can uses volatile objects declared

with the keyword volatile. In this case the C++ compiler supposes that the state of a

volatile object can be modified outside of the program and it does not perform some

operations (for example the code optimization operation). For a volatile object only a volatile

member function for that object can be called. A volatile member function can de defined

similarly with the constant functions replacing the const keyword by volatile.

Example 3.4.: A class that controls a hardware device by placing appropriate values in

hardware registers at known absolute addresses.

// file devregs.h

// Declare the device registers

struct devregs{

 // control-status-register

 unsigned short volatile csr;

 // data

 unsigned short const volatile data;

 // Busy-wait function to read a byte from device

 unsigned int read_dev() volatile;

 // constructor

 devregs();

};

// file devregs.cpp

// bit patterns in the control-status-register

#define ERROR 0x1

#define READY 0x2

#define RESET 0x4

devregs::read_dev() {

 csr = 0;

 data = 0;

}

unsigned int devregs::read_dev() volatile {

 while((csr & (READY | ERROR)) == 0)

 ; // NULL - wait till done

 if(csr & ERROR){

 csr = RESET;

 return 0xffff;

 }

 return(data & 0xff);

}

// file main.cpp

#include devregs.h

void process(void) {

 volatile devregs dvp;

 unsigned int ret;

 ret = dvp->read_dev(); // OK

}

Access functions represent a group of member functions very used in C++ programs. These

are functions, usually defined as inline, which allow to read or to modify the value of the

private data members of the classes, where the user does not have direct access. The functions

reading values are usually called accessors, while the functions writing values are called

modifiers.

There are not predefined rules for naming these functions, but usually the accessors are

prefixed by Get, while modifiers are prefixed by Set. For example, the functions GetXc, GetYc

and GetR are accessors. A modifier can be defines as:

 void SetXc(double x) { xc = x; }

Another way used is that of writing overloaded functions, for accessors and for modifiers. For

example for member data xc of Circle class, the following access functions can be defined:

 void Xc(double x) { xc = x; }

 double Xc() const { return xc; }

Remark. It is not recommended that accessors to return references, nor not constant pointers

at the private data of the classes (in this case they allow the direct access to the private data

members).

3.2 Class implementation. The resolution operator

For a complete class definition all member functions from the respective class declarations

that are not inline must be implemented. Usually the implementation of non-inline functions

is made in a distinct source file.

The C++ language has a new operator called resolution operator (denoted ::), in order to be

able to specify in the case of every member function the class where it belongs. The complete

specification of a function name, using the resolution operator is the following:

 <class name> : : <function name>

For example, the functions AddVertex, ComputePerimeter and AdjustArea from the polygon

class can be defined as follows:

 void polygon::AddVertex(point* p) {

 point **v = new point *[nr_vertices+1] ;

 for(int i=0 ; i< nr_vertices ; i++)

 v[i] = vertices[i] ;

 v[nr_vertices++] = p ;

 delete[] vertices ; //free the memory for vertices

 vertices = v;

 Compute Perimeter();

 AdjustArea();

 }

 void polygon::AdjustArea(void) {

 if (nr_vertexes > 2)

 area = area+(vertices[0]->x * vertices[nr_vertices-2]->x +

 vertexes[nr_vertices-2]->y * verteics[nr_vertices-1]->x +

 vertexes[nr_vertices-1]->y * vertices[0]->x -

 vertexes[0]->x * vertexes[nr_vertices-2]->y -

 vertexes[nr_vertices-2]->x * vertices[nr_vertices-1]->y -

 vertexes[nr_vertices-1]->x * vertices[0]->y) / 2;

 }

 void polygon::ComputePerimeter(void) {

 double l;

 if (nr_ vertexes > 1)

 for (int i=0; i<nr_ vertices -1; i++) {

 l = sqrt((vertices[i]->x –vertices[i+1]->x) *

 (vertices[i]->x - verices[i+1]->x) +

 (vertices[i]->y - verices[i+1]->y) *

 (vertices[i]->y - vertices[i+1]->y));

 perimeter += l;

 }

 l = sqrt((vertices[0]->x - vertices[nr_vertices-1]->x) *

 (vertices[0]->x - vertices[nr_vertices-1]->x) +

 (vertices[0]->y - vertices[nr_vertices-1]->y) *

 (vertices[0]->y - vertices[nr_vertices-1]->y));

 perimeter += l;

 }

The resolution operator can be used also in other cases. A usual utilization is the reference of

a name which is hidden in a block. For example, a variable defined in a file outside any

function is visible in all functions from the respective file, excepting the blocks where it is

redefined:

 int k ;

f1()

 {

 // k is visible in this block

 }

 f2()

 {

 // k defined at the file level it is not visible in f2

 int k = 0 ;

 k = k+2 ; // using k at the block level

 ::k = ::k+2 ; // using k at the file level

 }

The resolution operator can be used in this case as a unary operator which prefixes a name; in

this case it refers the most outside appearance of the respective name, declared at the file

level. In the previous example, the instruction:

 k = k+2 ;

refers to the variable defined in the function f2, while:

 ::k = ::k+2 ;

refers the variable defined at the file level.

The class constructors and the destructors are member functions of the respective class. In

the case when they are not defined as inline functions, they must be defined in the

implementation file of the class. For example, the constructor for polygon class can be defined

as follows:

 polygon::polygon() // constructor

 {

 vertices = 0 ;

 nr_vertices = 0 ;

 area = perimeter = 0;

 }

 polygon::~polygon() // destructor

 {

 delete[] vertices ;

 }

As seen before, constructors and destructors are special functions that do not have any

returned value (not even void). Moreover, the destructors can not have arguments.

Remark. The constructor of the class polygon does not allocate memory for polygon vertices.

Adding of a vertex can be realized by using the function AddVertex, but the memory

allocation must be realized outside of this function.

Another special category of member functions are the operators. The C++ language allows

overloading the common operators of the language in order to be able to define other

operations. The specification of an operator as a function is done with the help of the keyword

operator used as prefix of the respective operator. In the example of polygon class it is

overloaded the indexing operator:

 point* polygon::operator[](int k) {

 if (k < 0) {

 cout << \n Negativ index ;
 return 0 ;

 }

 return vertices[k] ;

 }

3.3 Using classes

As seen before, using of a class means the creation of some instance objects of these classes

and the communication with the respective objects with the help of messages, that is calling

their member functions.

The instance objects resemble with variables, e.g. they have a reserved memory zone for

storage of member data. All the observation referring to storage zones for variables are valid

also for objects, so the memory allocation for objects can be made in the static data part, or in

the stack part, or in the heap part of the program memory.

The creation of an object involves two distinct operations:

 The allocation of a memory zone having an appropriate dimension;

 The call of a constructor function of the class where the object belongs to, in order to

initialize the member data with initial values.

The dimension of the memory zone allocated for an instance object is, in general, given by the

sum of the dimensions of the data members, but this dimension depends on implementation.

There are situations when the memory zone dimension of an object is greater than this sum,

especially in the case of polymorphism, or in the case of some classes which do not contain

only member functions.

For example, for a Visual C++ compiler, the sequence:

#include <iostream>

using namespace std ;

struct A {

 int n;

 A(int k) { n = k ;}

 int N() { return n; }

};

struct B {

 void Print() { cout << "B"; }

};

int main() {

 A a;

 B b;

 cout << sizeof(a) << endl;

 cout << sizeof(b) << endl;

 return 0;

}

displays the values 4 and 1, because the int values are represented on 4 octets. The 1 value

appears because the compiler does not allow the existence of an object with zero dimensions.

The call of an object member function is strictly related with the respective object, by passing

of a hidden parameter, which refers the memory address of the respective.

This aspect will be discussed taking in consideration an example. For an application which

works with polygons to be able to use more polygons stored into a doubled linked list, at the

polygon class must be added 2 new members having the pointer type, which respectively

indicates to the precedent polygon and to the next one. The polygon class can be rewritten

(here it is not a derived class, but a new distinct class):

 class p_polygon {

 int nr_vertices ;

 point **vertices ;

 double area, perimeter ;

 p_polygon *succ, *pred ;

 void ComputePerimeter() ;

 void AdjustArea() ;

 public :

 p_polygon()

 {

 vertices = 0 ;

 nr_vertices = 0 ;

 area = perimeter = 0 ;

 succ = pred = 0;

 }

 ~p_polygon() ;

 int NrVertices() const { return nr_vertices ; }

 void AddVertices (point*) ;

 point* operator[](int) ;

 double Area() const { return area; }

 double Perimeter() const { return perimeter; }

 p_polygon* Pred() const { return pred ; }

 p_polygon* Succ() const { return succ ; }

 void AddPolygon(p_polygon*) ;

 } ;

3.3.1 The keyword this

The implementation of the functions of the previous class p_polygon is the same as in the case

of the class polygon, with the exception of the new added one. The AddPolygon function adds

a new polygon in the list, as successor of the current polygon:

 void p_polygon::AddPolygon(p_polygon* p) {

 p->succ = succ ;

 p->pred = this ;

 succ->pred = p;

 succ = p ;

 }

It is observed the utilization of a new keyword, this. This is called the self pointer and it

points always on the current object. This can be seen as an invisible parameter in the

AddPolygon function declared as:
 p_polygon* this

Remark. In the case of a class X, the parameter:

 X* this

is passed in all the non-static member functions of the X class.

A constructor for an object is implicitly called at the creation of an instance object of a class

after the memory allocation. This constructor will have this as a hidden parameter initialized

with the block address associated to the object.

Let us suppose that in the current application are defined two objects:
 p_polygon* p = new p_polygon ;

 // ...

 p_polygon d ;

 // ...

In both cases it is called the class constructor p_polygon: in the first case it is default called by

the new operator, and the memory is allocated in the heap zone of the program, while in the

second case the constructor is also default called by the compiler, but the memory for the

object is allocated in the data zone.

In both cases, the created objects will contain a copy of all member data of the p_polygon

class, and some of the members (nr_vertices, vertices, area, perimeter, succ, and pred, for

example) will be initialized by the constructors with certain values (0 in our case). In addition

all ’this’ parameters of the member functions for every object will be initialized with the

memory block address associated to object (in the first case, for example, with the value of p

pointer).

Let us suppose that it is created a new object:
 p_polygon* p4 = new p_polygon ;

 // ...

The adding of p4 in the polygons list after the p polygon can be describes as follows:
 p->AddPoligon(p4) ;

Now can be observed the utility of this pointer, because each new created object of the

p_polygon class will have another memory address, which is necessary when adding in the

polygon list.

The using of the hidden parameter this is not absolutely necessary, only in the case when an

explicitly reference at the memory address of the current object is made. For example, the

function AddPolygon can be also written as follows:

 void p_polygon::AddPolygon(p_polygon* p) {

 p->succ = this->succ ;

 p->pred = this ;

 this->succ->pred = p;

 this->succ = p ;

 }

Remark. When pointer to an object is used, the class constructor it is not called if the new

operator is not called. For example, the declaration:
 p_poligon* pp;

does not create any object of the p_polygon class.

3.3.2 Static members of a class

As seen before, every instance object of a class has usually a copy of the member data of the

class to which it belongs. For this reason any modification of the value of an object member is

local to the respective instance and it is not visible in other instances of the same class.

The C++ language allows, in addition, the possibility of defining members having values that

can be used in common by all other class instances. These members are called static members

and they are declared with by using the keyword static.

Example 3.5. Let us consider a class Experiment, which allows the description of the

observations on a physic measure. Each class object stores a measured value of the physic

measure. The Experiment class must determine the observations number at a certain time, and

also the average of the observed values. Two static member data are used (n and s), which

store the number of created objects until the current time and their sum of values, and also

two static member functions (N and Med) for retrieving the number observations and the

average of these values.

// experiment.h file

class Experiment {

 double x;

 static int n;

 static double s;

public:

 Experiment(double);

 double X() const { return x; }

 static double Med() { return s/n; }

 static int N() { return n; }

};

Member data having static type are common for all class objects and they have allocated a

memory zone that is different from the zone of non-static data. In this way it can be realized

the simple and efficient communication between different objects belonging to the same class.

The effective definition (memory allocation and initialization with values) of the static

member data must be realized outside of the class declaration and in a single place in the

program. Usually the definition of the static member date is realized in the file which contains

the implementation of the class, avoiding in this way multiple definitions.

For the previous example, in the implementation file of the experiment class must be added

the following definitions:
 int Experiment::n = 0 ;

 double Experiment::s = 0 ;

 as in the next example:
// experiment.cpp file

int Experiment::n = 0;

double Experiment::s = 0;

Experiment::Experiment(double v) {

 x = v;

 n++;

 s += v;

}

The constructor of the Experiment class must do two supplementary actions for every new

created object: incrementation of the total number of the class objects, and also adding of the

object current value to the sum of all values of the class objects.

The static data can have any type of access (public, protected, private), as any class

member. The conclusion that these static data members can be used anywhere in the program

is false: being static, the compiler does not allow another definition for them and the value

modification outside of the class where they have been declared also it is not allowed.

The using of static member data lead to a better structuring of information in a program,

because these values are global only for class objects where they have been declared.

In the previous example, N and Med are two static member functions of the Experiment class.

As static member data, the static member functions of a class are unique for all respective

class instances. Their using is necessary when certain classes have static member data.

Static member data can not use the hidden parameter this. From this aspect results another

conclusion: the static member data can have access only at the static members of the

respective class (data or functions). In the previous example, the Med function can not modify

the x member value and it can not call other member functions of the class (X for example).

One way that a static member function can have access at the non-static member of the class

to which it belongs, is by passing as parameter in the static function of an object of the

respective class.

Example 3.6. The class Folder stores the path for a current folder and a predefined path,

unique for all class objects. The static function preset allows setting the current path for a

folder which is passed as parameter.

class Folder {

public:

 static void setpath(char const *newpath);

 static void preset(Folder &dir, char const *path);

private:

 string Currentpath;

 static char path[];

};

char Folder::path[200] = "C:\\";

void Folder::setpath(char const * newpath) {

 strcpy(path, newpath);

}

void Folder::preset(Folder &dir, char const * newpath)

{

 dir.Currentpath = newpath;

}

int main() {

 Folder dir;

 Folder::setpath("D:\\");

 dir.setpath("D:\\");

 Folder::preset(dir, "D:\\OOP");

 dir.preset(dir, "D:\\OOP");

 return 0;

}

Another particularity of these functions is that they can be called also directly, even if they are

declared private, without the help of an object from from the class to which it belongs. For

example, a file using the experiment class could be the following (it is considered the

sequence of the following values: 0.5, 1.5. 2.5, … , 9.5):

//main.cpp file

int main() {

 for (int i=0; i<10; i++)

 Experiment e(i+0.5);

 int n = Experiment::N();

 double m = Experiment::Med();

 cout << "n = " << n << endl << "Med = " << m << endl;

 return 0;

}

It is observed that the functions N and Med have been called without any experiment class

object.

Remarks.
1. The non-static member functions can refer static members of the respective class (for

example, the case of the constructor of Experiment class).

2. A static member function which is private can not be called by means of a class object.

3. If a member function is declared static in a class, but it not defined as inline, the

effective definition of this function does not contain the word static. For example:

class A

 {

 // ...

 static int x ;

 static void SetX(int) ;

 // ...

 } ;

 void A::SetX(int k)

 {

 x = k ;

 }

