
2. Extensions of the C language in the C++

language

The C++ language is a superset of the C language and it has been developed by Bjarne

Stroustrup. It provides support for the procedural programming and for data abstraction, but

the main purpose is the support provided for object oriented programming paradigm.

There are two types of extensions over the C language:

• adding some facilities which are not related to object oriented programming paradigm;

• adding the main elements in order to provide support for object oriented programming.

The first type of extensions refers to some elements as: reference type, in-line substitution of

the functions, etc., while the second group of extensions refers to elements such as class,

inheritance, polymorphism, etc.

In this chapter will be discussed only non object-oriented programming aspects related to the

extensions of the C language.

2.1 Adding new data types

The C++ language adds two new data types: bool and wchar_t.

A) The bool data type represents the logical (boolean) values and it uses two built-in

constants, true and false. There is a similarity with the Pascal language (which has the data

type Boolean), and with the Java language (which has the boolean data type).

Unlike Pascal in the C++ language there is compatibility between the data type bool and

arithmetic data types. The bool variables can be assigned with integer values, because a C++

compiler automatically converts an integer value to the bool value. For example, for the

following sequence:
 bool boolVar ;

 int intVar ;

 // ...

 boolVar = intVar ;

the compiler generates an equivalent statement:
 boolVar = intVar ? true : false ;

There is also an automatic conversion from the bool values to the integer values. For example:
 intVar = boolVar ? 1 : 0 ;

In this way there is a compatibility with the C rules for evaluating conditional expressions

appearing is some C statements such as for, while, if, etc.

Using the bool data type allows writing code with a more accurate meaning. For example the

following function prototype:
 bool Apartine(double x, double a, double b) ;

specifies that the function returns a logical value, while the function:

 int Apartine(double x, double a, double b) ;

does not offers a such certitude.

B) The wchar_t (wide character) data type is an extension of the char data type, which

allows the using characters represented internally on two bytes (for example the Unicode set

of characters). For this type, sizeof(wchar_t) = 2, allowing to use sets of characters

having more than 64000 characters.

2.2 Variable declaration and namespaces

Unlike the C language, where the local declarations must be located only at the beginning of a

block, before the statements, in the C++ language the local declarations can be appear

anywhere within a block. The scope of such local declared variables represents a part of the

block where they have been declared, starting to the line of the respective declaration and

ending the end of the current block.

Example 2.1.

void Processing()

 {

 int k = 5 ; //starts the scope of k variable

 // ...

 k = k + 3 ;

 // ...

 float x = 7 ; // starts the scope of x variable

 // ...

 //starts the scope of i variable

 for (int i=0 ; i<k ; i++)

 printf(%d, i) ;
 // ...

 //the scope of k, x, i variables ends

 }

Another problem of the C language concerns the namespace of a program, making it difficult

to write and to test large programs developed by several programming teams. All the variables

used in different modules of a program are related to the whole program. So, the variables

with the same name declared in different modules of a program, outside of any function,

access the same memory zone and represent the same variables. A solution of this problem of

the C language is to declare static variables in the respective files and to hide in this way these

variables from outside.

The C++ language attaches the variables to a namespace, which allows the variables with the

same name but in different modules to represent distinct variables.

All the variables declared in the standard libraries of the C++ language have a predefined

namespace, denoted by std. For using a namespace different to the current compilation unit

the directive using is used:
 using namespace std;

For example, for using the standard functions and objects working with the input/output

operations the following sequence should be used:
 #include <iostream>

using namespace std;

Remark. The header files related to the standard library of the C++ language do not contain

the suffix “.h” as in the C language. All the header files related to the standard library of the C

language are rewritten in the C++ language, and their names have the character ’c’ as prefix.

For example:
 #include <alloc.h>

is equivalent with:
 #include <calloc>

 using namespace std;

However, in order to keep the compatibility with the C programs, the syntax for including the

standard header files of the C language can be also used in the C++ programs.

2.3 References

One of major disadvantage of the C language is the only way of passing parameters when

calling a function (unlike languages like Pascal or Ada). The C language allows only call by

value, which requires using pointers in the case when a function modifies the value of a

certain parameter.

The C++ language adds the notion of reference. A reference is an alternative name (alias) for

a variable. Such a data type is a derived type, which is obtained from a base type by using the

operator &. If T is a data type, then the notation T& represents the reference type derived

representing the set of all the reference elements at the T type.

The values of reference types are similar to pointers, in the sense that a reference has as value

the memory address of a variable belonging to a base type. But there are some important

differences between pointers and references:

a) A reference must be always initialized at the declaration. For example, the declaration:
 int k;
 int &r = k;

declares the r reference variable as having a value equal with the memory address of the k

variable. This initialization is not an assignment, it allowing only the base variable (k) to

have a new name (r). In the block where two variables have been declared (k and r in our

case), both names (k or r) can be used as referring the same object.

b) References are automatically dereferred when using them in a program, so we do not

need the * operator. For example:
int k = 5;

int &r = k, *p;

p = &k;

r = r + 1 ; // this means k = k + 1

*p = *p + 1 ;

The above two observations need some remarks:

• A reference value cannot be modified after the initialization, it referring always the

same object to which it has been initialized.

• The operators do not perform their actions on the reference, but on the variable

referred by the reference.

The main way to use the reference is the passing of the function parameters. In this case a

formal parameter having a reference type represents another name for the actual parameter

corresponding to a call. Any modification of the formal parameter value means the

modification of the actual parameter value.

Example 2.2. Interchanging two values by using two different methods:

 void Swap1(int *a, int *b)

{

 int c = *a ;

 *a = *b ;

 *b = c ;

 }

 void Swap2(int &a, int &b)

{

 int c = a ;

 a = b ;

 b = c ;

 }

 void Process()

{

 int x = 7, y = 5 ;

 Swap1(&x, &y) ;

 printf(“%d%d”, x, y) ;

 x = 7 ; y = 5 ;

 Swap2(x, y) ;

 printf(“%d%d”, x, y) ;

 }

When a function is called the formal parameters of reference type are initialized with the

address of the actual parameters, this fact implies that these actual parameters have to be

names of variables with a data type equal with the base type of the corresponding references.

2.4 Inline functions

In the case of small functions, with small number of statements, the calling mechanism

(creation of the frame on the stack, parameter passing, etc.) can become significant in respect

with the execution time of the function, so the execution time of the program can increase and

its efficiency decreases.

An alternative can be the use of macrodefinitions, which are replaced by the compiler in the

processing part. For example:

#define minim(a, b) ((a < b) ? a : b)

 void Processing()

 {

 int x = 7, y = 5, z ;

 z = minim(x, y) ;

 // ...

 }

The C++ language provides in addition the possibility of expanding inline the functions. The

in-line expanding means the generation by the compiler of the function code, without

generating a calling part.

The inline declaration of a function is realized by using the keyword inline before its

definition, and in the case of a member function of a class, by including the implementation of

the function block in the class declaration. For example, for the minim function can be writing

also:

inline int minim(int a, int b)

 {

 return ((a < b) ? a : b) ;

 }

In the case of the inline functions the compiler tries to place an instance of the calling function

in the same code segment as the called function, but this fact is generally not guaranteed. For

complex functions (recursive functions, or functions having repetitive statements) the inline

mechanism is not performed.

In general the using of the inline functions is more efficient than the usual functions, but it is

less efficient than the using of macrodefinitions.

Example 2.3. To illustrate this mechanism the same operation will be achieved through tree

different methods: macrodefinition, inline function, and usual function. The system time will

be used for determining the running time of each function (f1, f2, and f3).

#include <ctime>

using namespace std;

#define SQR(x) (x)*(x)

inline float Sqr (float x)

{

 return x*x;

}

float sqr (float x)

{

 return x*x;

}

void f1()

{

 float x = 2.5, y;

 for (long k=0; k<10000000; k++)

 {

 y = SQR(x);

 }

}

void f2()

{

 float x = 2.5, y;

 for (long k=0; k<10000000; k++)

 {

 y = Sqr(x);

 }

}

void f3()

{

 float x = 2.5, y;

 for (long k=0; k<10000000; k++)

 {

 y = sqr(x);

 }

}

int main()

{

 time_t t1, t2, t3, t4;

 time(&t1);

 f1();

 time(&t2);

 printf("t1 = %d\n", t2-t1);

 f2();

 time(&t3);

 printf("t2 = %d\n", t3-t2);

 f3();

 time(&t4);

 printf("t3 = %d\n", t4-t3);

 return 0;

}

The output of the above program running on a certain computer is the following:
 t1 = 1

 t2 = 14

 t3 = 17

2.5 Default arguments for function parameters

Usually, a main rule for many programming languages imposes the same number of

parameters both for the function definition and for the function call. The C language allows

the definition (quite difficult) of some functions with variable number of parameters, with the

help of the operator …. It is the task of programmers to treat the parameters, because the

compiler does not perform any verification.

In addition to the C language, the C++ language provides a simpler and more efficient method

for functions with a variable number of parameters: functions with default values for

parameters.

A parameter with a default value is declared as usually through a name and a data type, but in

addition it is initialized with an appropriate value. If the function call contains an actual

parameter with another value than the one specified in the initialization, the actual value is

used as initialization; if the actual parameter is missing, the actual value is considered as the

initialization value.

Example 2.4. The funcţia Distance can determines both the distance between two points in a

plane, and the distance between a point and the origin of the axes.

double Distance(double x, double y,

double x0 = 0, double y0 = 0)

 {

 return sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0)) ;

 }

 void Processing()

 {

 double x1 = 3, y1 = 5, x2 = 4, y2 = 6, d1, d2 ;

 //distance between(x1,y1) and origin

 d1 = Distance(x1, y1);

 //distance between (x1, y1) and (x2, y2)

 d2 = Distance(x1, y1, x2, y2);

 // ...

 }

Remarks:

a) A parameter with default value can be initialized only with a constant expression,

which can be evaluated at the compilation phase.

b) A function can have more parameters with default values, but in this case they

must take the last positions (because otherwise the current values of the parameters

cannot be determined when calling the function).

A problem can occur in the case of the functions which are also declared and defined, because

the heading of such a function can appear two times in the program. In this case, the C++

language imposes that the initializing values to be specified only once, at the definition or at

the declaration. A solution which keeps the modular style for programming is that in which

the implicit values are specified in the functions prototype from the header file, if it exists.

2.6 Function overloading

Overloading of the functions name means in fact the existence of two or more functions with

the same name which perform different tasks. An example of overloading exists also in Pascal

language, where some operators are used for different operations. For example, the + operator

is used for adding the numbers, for the union of sets and also for string concatenation.

The C++ language allows the definition of overloaded functions.

Example 2.5. The definitions of four functions with the same name add:

 int add(int a, int b) { return a + b ; }

double add(double a, double b) { return a + b ; }

char* add(char *a, char *b) { strcat(a, b) ; return a ; }

struct complex { double re ; double im ; } ;

complex add(complex a, complex b)

{

 complex c ;

 c.re = a.re + b.re ;

 c.im = a.im + b.im ;

 return c ;

}

void Processing()

 {

 int k = add(5, 1) ;

 double s = add(1.5, 8.4) ;

 char *s1 = abc, *s2 = xyz, *s3 = add(s1, s2) ;
 // ...

 }

The compiler determines the effective function which will be called depending of types of the

actual parameters and their number.

Remarks:

a) For defining two different overloaded functions they must have different number

of parameters number or at least the data type of one of the parameters.

b) Two overloaded functions can not differ only by the type of the returned value,

because the type of the returned value is not verified by the compiler.

2.7 Operators for memory handling

The creation and the destruction of the dynamic objects in the C language mean the memory

allocation and deallocation. Usually there are used standard functions, such as malloc and

free.

The C++ language has in addition two operators represented by the keywords new and delete.

The used syntax is:
 <pointer name> = new [‘(‘] <type> [‘)’][(<expression>)] ;

 delete <pointer name> ;

Example :
 double *p = new double ;

 double *p = new(double) ;

One can observe the superiority of the new operator over the malloc function, because it can

determine both the amount of memory necessary to be allocated, and the pointer type which

will be returned.

The new operator is used also for memory allocation for composed elements. In the case of

arrays the length of the array must be explicitly specified. The used syntax is:
 <pointer name> = new <type> ‘[‘ <dimension> ‘]’ ;

 delete ‘[‘ [<dimension>] ‘]’ <pointer name> ;

For example:
 struct point { double x, y ; } ;

 // a structure with 2 components is allocated

 struct point *p = new struct point(2, 4) ;

// an array with 10 components is allocated

 double *q = new double[10] ;

// an array with 10 pointers to int is allocated

 int **r = new int*[10] ;

Remarks:

a) The new operator, as malloc function, allocates memory in the heap part of the

memory image of the program.

b) This operator calls by default a constructor the class if the data type is an instance

of certain class.

The complementary for the operator new is the operator delete. The action made by this

operator is similarly with the function free: it de-allocates the memory area where a certain

pointer points to. In addition to the function free, it allows protection in the case of trying to

free the memory for a NULL pointer.

The use of delete is an advantage in the case of the deallocation of an array.

For example:
 int *p = new int[10];

 delete p ;

In this case only the part occupied by the first element of the array is deallocated. To de-

allocate all the area of the associated array, the number of components of the array must be

specified. This number will be specified at the end of the key word delete between

parentheses, as in the following example:
delete[10] p ;

For avoiding the errors which might occur if there are de-allocated a different number of

components than the number used by its associated new operator a simpler syntax can be

used:
 delete[] p ;

In this case the number of deallocated elements is automatically determined by the compiler.

The operator new can be used in addition for the creation of multi-dimensional arrays. In this

case all the dimensions of the array must be specified. For example, the following expression:
 new int[2][3][4]

allocates the memory for two arrays of the type:
 int [3][4]

and it returns a pointer to the first array, that is a pointer of the following type:
 int (*)[3][4]

Example 2.6. Allocation and deallocation of an array:
 int a[2][4] = {1, 2, 3, 4}, (*p)[4];

 p = new int[2][4];

 for (int i=0; i<2; i++)

 {

 for (int j=0; j<2; j++)

 {

 p[i][j] = a[i][j];

 }

 }

 // ...

 delete[] p;

Remark. Regardless the number of the dimensions of an array that is allocated by the

operator new, the syntax for deallocation of this array by using the operator delete is the same

(only one pair of brackets).

The operator delete (as the new operator) by default calls the class destructor, if the pointer

indicates an instance of a certain class.

2.8 Template functions

The C++ language offers support for data abstraction and parameterization. The main notions

added in this context are the template functions and template classes. The using of template

functions and classes, as the generic programming paradigm will be discussed in a further

chapter. In this chapter only some basic elements concerning generic functions will be

presented.

A template function contains at least a generic (unspecified) data type, in this way the

generality of the function will be increased. The syntax for defining a template function

imposes the presence of the following construction:

 template ‘<’ class name ‘>’

before the header of the function. In this construction, name represents the name of the data

type (or the name of the class), which is a parameter for the template function (that is different

to the formal parameters of the function) and it can be used inside the block of the function.

A template function describes a set of functions having similar code but different data types.

Such a template function can be instantiated; each instance of a template function is a usual

function. The syntax to instantiate a template function is similar to a function call; in addition

the actual name of the used data type must be specified in angle brackets.

Example 2.7. The function Swapp will swap the values of two parameters whose data types

are generic. In function main two instances of this template function will be called, where the

generic data type T is instantiated to int and to double respectively.

#include <iostream>

using namespace std;

template <class T>

void Swap(T& a, T& b)

{

 T temp;

 temp = b;

 b = a;

 a = temp;

}

int main()

{

 int a=3, b=5;

 double x=33, y=55;

 Swap<int>(a,b);

 cout<<a<<" "<<b<<endl;

 Swap<double>(x,y);

 cout<<x<<" "<<y<<endl;

 return 0;

}

Remark. In the above example the two calls of Swapp can be replaced also by the following

sequence:
 Swap(a,b);

 Swap(x,y);

because the compiler can detect automatically the data types int and double to which T will be

instantiated.

2.9 Input/Output operators

The C++ language, as the C language, does not contain specific statements for I/O operations.

In addition to C, the C++ language has a specific hierarchy of classes. The main concept in

this hierarchy is that of stream, which is similar to a data flow between the memory

associated to a program and a peripheral device.

The specific I/O operations in the C++ language will be later described; in this chapter only

some principal aspects related to the data reading and writing will be presented. In the I/O

hierarchy there are two important classes used for the I/O operations: istream and ostream,

and also the iostrem class (which is derived both from istream and ostream) used for both

types of operations. In the header file iostream there exist the declarations of the principal

classes, constants and objects used for this kind of operations. The most used objects are the

followings:

• cin – used for data reading from the standard input device;

• cout – used for data writing at the standard output device;

• cerr – used for error message display;

• clog – used as cerr, but the buffer does not become empty for each error message.

For performing the I/O operations some operators were defined, which are the overloading of

some C operators. For example, for reading the values from the keyboard was overloaded the

right shift operator (>>), while for the writing operation was overloaded the << operator.

For example, for reading a value from the keyboard and assigned it to an int n, it can be write:
 cin >> n ;

and for displaying the value of n:
 cout << n ;

These operators have been overloaded for all built-in data types, also for strings. So the

operators can have as parameters any built-in data type.

These operators can be concatenated because they return data, so there can be read and write

many data with the same operator. For example:
 int n = 7 ;

 double x = 4.5 ;

 cout << n << x ;

Example 2.8. A simple program for determining the sum of the elements of an array whose

values are read from the keyboard:

 #include <iostream>

 using namespace std ;

 int main()

 {

 int n = 10 ;

 double s = 0, x[10] ;

 cout << ”Give the range elements : ” ;

 for (int i = 0 ; i < n ; i++)

 {

 cout << ”x[” << i << ”]= ” ;

 cin >> x[i] ;

 s += x[i] ;

 }

 cout << endl << ”s=” << s << endl ;

 return 0;

 }

Remark. The reserved word endl represents the character ’\n’.

The C++ language has some member functions of the I/O classes that can be used for data

reading and writing. For example, the function get (inserts a character in the output stream

and returns the stream at the output), and put (extracts the next character from the input

stream and returns the input stream) have the following declaration:
 ostream& put(char c) ;

 istream& put(signed char &c) ;

Example 2.8. A program that copy of the standard input file at the standard output file:

 #include <iostream>

 using namespace std ;

 int main()

 {

 int c ;

 while ((c = cin.get()) != EOF)

 cout.put(c) ;

 return 0;

 }

