
12 Exceptions

There are situations in which errors can appear when running a program, mostly in the

interaction between the program and its environment, when certain values cannot be

controllable in the program..

For example, most of the standard I/O functions return a value which indicates if the

respective operation ends successfully or not. In the case when the operation failed, an

exceptional situation results in the program, which must be treated, so that the

program does not lead to greater errors. For this reason, it is indicated as after each

call of a standard function that can fail, to test the final value returned by the

respective operation:

ifstream fout(“f_out.txt”);

if (!fout) {

 // File open error – must be treated here

}

// Operations performed when no error occurred

Not always there is sufficient information for treating a certain error, in the program

zone where it was detected. In these cases, the information about the error must be

reported to a larger context, usually in the function block which calls the function

where the error it is detected.

The C language allows three ways of treating these situations:

a) Returning the error information from the called function to the calling

function. This information can be returned by parameters, or by the returned

value. In the case when such error information cannot be returned, some

global error indicators can be set in the called function and tested in the calling

function.

b) Using the standard raise and signal functions, for managing the signals of

the system. The raise function can generate an event, and signal can

determine what actions must be performed when the respective event appears.

c) Using the standard setjmp and longjmp functions, for performing a non-

local jump in the program. These functions allow the jump between different

functions of the program: setjmp has the role to save the program context,

and longjmp to restore the context in case of error.

These three ways have some disadvantages. The first variant, which is the most used

by the programmers, supposes the write of the code rather complicated for sending

and receiving error information. The last two variants are rather hard to use and

suppose a very good knowledge of the standard library of the C language.

The C++ language has an alternative to these variants, which is simpler to use and

more efficient, exceptions, and also a mechanism of handling these exceptions.

12.1 Throwing and catching exceptions

Exceptions represent a way to control the program execution when errors appear. The

mechanism of handling exceptions supposes the following actions:

• To suspend the current execution of the function that detected the error, to

generate an exception and also an object associated to it, which contains

information referring tis error;

• The program execution is continued in another zone, where the exception and

its associated object is catch, and necessary actions for error handling are

performed.

Handling an exception supposes two distinct elements:

• A non-local transfer of the program execution between two distinct zones of

the program, which is performed automatically by the compiler;

• Throwing and catching of an exception and its associated object between the

two zones of the program.

Throwing an exception and its associated object is performed by a special statement,

which has the following syntax:

throw [<expression>] ;

For example, supposing that in a program, an Err class was defined, having as

members a string and a constructor, the next sequence generates an exception:

throw Err(“Error at file opening”);

When executing this sequence:

• The execution of the current function is suspended:

• An object corresponding to the expression following the keyword throw is

created;

• This object is returned to a larger context, even if does not correspond to the

type of the return value of the function.

Before transferring the program execution to another context, all objects created from

the current context are destroyed. The object related to the exception will be destroyed

later, after its reception.

In the case when the throw statement appears in the body of the function, the

mechanism of exception handling forces the current function to end. When leaving

the current function is not desired, then a special block, called try block, can be used.

The syntax of the try block has the structure:

try {

 // Code that can generate exceptions

}

and its semantics is the following: the context to which the exception is sent (if it is

the case) is immediately exterior to the try block. In this way, the actions of catching

and handling the exception is performed in the same function.

The catching of an exception is performed by a special construction, called catch

clause, or handler of the exception. The syntax of such a handler is the following:

catch (<type> <ident>) {

 // Code for handling the exception

 // associated to the <ident> object

 }

where <type> represents the data type of the object associated to the exception, and

<ident> is seen as a formal parameter and represents the object name.

A catch clause allows handling a single exception, and it must follow a try block.

When in a try block are generated more exceptions of the same type, a single catch

clause is enough for handling these exceptions. If several exceptions of different type

are generated in a try block, more catch consecutive clauses can be specified, one

clause for each type of exception. For example:

try {

 // sequence that can generate 2 types of exceptions

} catch(type1 id1) {

 // handling exception of type 1

} catch(type2 id2) {

 // handling exception of type 2

}

Example 12.1. The following program uses the exception handling mechanism, for

simulating the actions of throwing and catching of an exception.

#include <iostream>

using namespace std;

class A {

public:

 A() { cout << “Constructor A\n”; }

 ~A() { cout << “Destructor A\n”; }

 void f();

};

class B {

public:

 B() { cout << “Constructor B\n”; }

 ~B() { cout << “Destructor B\n”; }

 void g();

};

void A::f() {

 cout << "f in class A\n";

 throw 1;

 cout << "Statements that will not be executed\n";

}

void B::g() {

 A a;

 cout << "g in class B\n";

 a.f();

 cout << " Statements that will not be executed\n";

}

int main() {

 B b;

 try {

 b.g();

 }

 catch (int k) {

 cout << "Exception handling. k = " << k << endl;

 }

 return 0;

}

In the precedent program, in the function f from the class A is thrown an exception.

The execution of the function f is interrupted, and the execution of the program is not

continued in the calling function g, but in the main function.

Remark. A try block can exist also at the function level, in which case it replaces

the function block. For example:

void f() try {

 throw “Function f”;

}

catch (const char* msg) {

 cout << msg << endl;

}

A sequence of catch clauses can contain a default catch clause. This clause is

usually specified on the last position in the sequence, and it contains the “…” operator

inside the clause parameters. A default catch clause specifies the fact the respective

handler treats an exception whose type cannot be determined (there is no specific

handler for the respective type).

Example 12.2.

#include <iostream>

using namespace std;

int main() {

 try {

 int n;

 cin >> n;

 switch (n) {

 case 1: throw 2;

 case 2: throw “Sequence”;

 case 3: throw 12.25;

 }

 }

 catch (char const *mess) {

 cout << "Treating char const * : " << mess << endl;

 }

 catch (int k) {

 cout << "Treating int : " << k << endl;

 }

 catch (...) {

 cout << "Type unknown\n";

 }

 return 0;

}

In conclusion, an exception is generated (thrown) by a throw statement and it is

received (caught) by the first catch clause, exterior to the context from which it was

thrown.

If no matching handler is found, the standard function terminate() is called;

12.2 Exception specifications

The C++ language does not impose as a certain function which generates exceptions

to be declared explicitly. A good programming style imposes to define such a function

to inform the possible users of the code about possible thrown exceptions.

The declaration of exceptions that can be thrown by a function can be realized by a

specific construction, called exception specification. This is inserted immediately

after the function declarator (it follows the function parameter list), as in the following

syntax:

<function declarator> throw ‘(‘ <type> {, <type> } ‘)’

Remarks.

1. Between parantheses there are specified the data types of the objects associated to

exceptions thrown by the function. For example, the sequnce:

void f() throw(int, A);

specifies that the function f can throw two types of exceptions, associated to the data

types int and A respectively.

2. When the declarator of a function has no exception specification, this means that

the function can throw any type of exceptions.

3. When after the keyword throw, the list type is empty, this means that the

respective function does not generate exceptions. Example:

void f() throw();

Because violations of an exception specification of a function are detected only at

run-time, the above syntax is called dynamic exception specification in the standard

C++ 2011. Moreover, dynamic exception specification is deprecated in this standard

(the last standard of the C++ language until now).

Despite the fact that the C++ community has greeted enthusiastically the introduction

of exception specification (several years after the introduction of exceptions, in 1989),

exception specifications have proven close to worthless in practice, while adding a

measurable overhead to programs. There are several problems with exception

specifications in C++, such as:

- Run-time checking: C++ exception specifications are checked at runtime rather

than at compile time, so they offer no programmer guarantees that all

exceptions have been handled;

- Run-time overhead: Run-time checking requires the compiler to produce

additional code that also hampers optimizations;

- Unusable in generic code: Within generic code, it is not generally possible to

know what types of exceptions may be thrown from operations on template

arguments, so a precise exception specification cannot be written.

This is the reason for which dynamic exception specification became deprecated in

the C++ 2011 standard (known as C++11, which is the current ISO C++ standard).

In practice, only two forms of exception-specifications are useful: an operation might

throw an exception (any exception) or an operation will never throw any exception.

This fact led to a new syntactic construction for exception specifications, called

noexcept specification. This contains the keyword noexcept:

- noexcept (<constant-expression>)

- noexcept

where <constant-expression> is a constant expression that can be evaluated to

true or false.

The form noexcept is equivalent to noexcept(true), and both of them specify

that the corresponding function does not throw any exception. The form

noexcept(false) specifies that the function can throw any exceptions, as in the

case of the declaratory of the function does not contain an exception specification.

With the introduction of noexcept specification, programmers can now express the

two kinds of exception guarantees that are useful in practice, without additional

overhead.

The keyword noexcept is regarded as an operator in C++ 11, following the syntax:

 noexcept(<expression>)

The noexcept operator does not evaluate <expression>:

- The result is false if the expression contains at least one of the following

constructs:

o A call to any type of function that does not have non-throwing

exception specification, unless it is a constant expression;

o A throw expression;

o A dynamic_cast expression when the target type is a reference type,

and conversion needs a run-time check

o A typeid expression when argument type is polymorphic class type

- In all other cases the result is true.

A noexcept specification on a function is not check a compile-time. It represents a

method for a programmer to inform the compiler whether or not a function should

throw exceptions. The compiler can use this information to enable certain

optimizations on non-throwing functions as well as enable the noexcept operator,

which can check at compile time if a particular expression is declared to throw any

exceptions.

If a search for a matching exception handler leaves a function marked noexcept or

noexcept(true), the standard function terminate is called immediately. For

example:

template <class T>

 void f() noexcept(T()) {}

void g() noexcept(true) {}

void h() noexcept { throw 42; } // also noexcept(true)

int main() {

 f<int>(); // OK, noexcept(int()) = true

 g(); // OK

 h(); // compiles, but it calls ‘terminate’

}

12.3 Specific cases for handling exceptions

There are certain cases which can appear when exceptions are thrown and caught. In

this paragraph two situations will be described: unhandled exceptions and exceptions

re-thrown to a wider context.

12.3.1 Unhandled exceptions

There are situations when for a function which throw exceptions, a set of exception

handlers are specified, but because of certain reasons, a different exception can be

thrown, which does not match any specified handler. For example, when in a block

function, another function is called, about which it is not known if it throws

exceptions, and eventually, what kind of exception types it generates.

Two special functions are used by the exception handling mechanism for coping with

errors related to the exception handling mechanism itself: terminate and

unexpected:

- terminate function is called mainly in two important cases:

o when the exception handling mechanism cannot find a handler for a

thrown exception

o when the search for a handler encounters the outermost block of a

function with a noexcept specification that does not allow the

exception

- unexpected function is called when a function with a dynamic exception

specification throws an exception that do not appear in the list of the dynamic

exception specification.

By default, unexpected calls terminate, but a program can install its own handler

function. In this case, another predefined function can be used: set_unexpected.

The function set_unexpected receives as parameter a pointer to a handler function,

which represents the function that will be called in this situation. The prototype of

such a handler has the following form:

 typedef void (*unexpected_handler)();

Remark. There are some compilers that do not use the set_unexpected function.

Instead of set_unexpected they use another function, set_terminate, for

specifying the handler function which will be called.

Example 12.3. The following program (that run under the Windows operating system

and it is compiled with a Microsoft C++ compiler) uses the set_terminate

function for specifying the function that will be called when handling mechanism

cannot find any specific handler for an exception.

#include <iostream>

using namespace std;

class A { };

class B { };

void g();

void f(int i) throw (A, B) {

 switch(i) {

 case 1: throw A();

 case 2: throw B();

 }

 g();

}

void g() { throw 47; }

void my_terminate() {

 cout << "Exception unknown\n";

 exit(1);

}

int main() {

 set_terminate(my_terminate);

 for(int i = 1; i <=3; i++)

 try {

 f(i);

 }

 catch(A) {

 cout << "Treating A exception" << endl;

 }

 catch(B) {

 cout << "Treating B exception" << endl;

 }

 return 0;

}

12.3.2 Re-throwing exceptions

Another specific situation that can appear is the case when a certain exception is

caught in a block, in which is not sufficient information for handling it. So, the

exception is re-thrown to a larger context, all information related to the exception

remaining unaltered.

Rethrowing an exception is performed by the throw statement, without any attached

expression:

throw;

Example 12.4. The program from the example 12.2 is modified, in which the

exception is re-thrown to a superior context.

#include <iostream>

using namespace std;

int main() {

 try { // Level 0

 try { // Level 1

 int n;

 cin >> n;

 switch (n) {

 case 1: throw 2;

 case 2: throw “Sequence”;

 case 3: throw 12.25;

 }

 }

 catch (char const *mess) {

 cout << "Level 1. char const * : " << mess << endl;

 }

 catch (int k) {

 cout << "level 1. int : " << k << endl;

 }

 catch (...) {

 cout << "level 1. Unknown type\n";

 throw; // Rethrow the exception

 }

 }

 catch (double d) {

 cout << "Level 0. double : " << d << endl;

 }

 return 0;

}

In the previous example, when the value of n is 3, an exception of type double it is

thrown. It can not be completely handled at level 1, and it is re-thrown to the

immediate exterior block (level 0). At this level there is a specific handler, and it

displays the value related to the exception (12.25).

12.4 Exceptions, constructors and destructors

The main disadvantage of using the setjmp and longjmp standard functions is that

in this case, the objects that are on the current stack-frame cannot be destroyed when

jumping to the exterior function. The exception handling mechanism of the C++

language allows solving this problem.

All the complete created objects in a block where an exception is thrown are

destroyed by the compiler in the exception handler where the exception was caught.

Example 12.5. The following program uses the Object class for displaying the

moment of creation and destruction of objects.

#include <iostream>

#include <string>

using namespace std;

class Object {

 string name;

public:

 Object(string n): name(n) {

 cout << "Constructor for object " << n << endl;

 }

 Object(Object const &o): name(o.name + " (copy)")

 {

 cout << "Copy-constructor for object "

<< name << endl;

 }

 ~Object() {

 cout << "Destructor for object " << name << endl;

 }

 void f() {

 Object toThrow("'local obj'");

 cout << "Function f from object " << name << endl;

 throw toThrow;

 }

 void hello() {

 cout << "Hello from the object " << name << endl;

 }

};

int main() {

 Object out("'main obj'");

 try {

 out.f();

 }

 catch (Object o) {

 cout << " exception treating\n";

 o.hello();

 }

 cout << “After the catch clause\n”;

 return 0;

}

The program output is:

Constructor for object 'main obj'

Constructor for object 'local obj'

Function f from the object 'main obj'

'local obj' (copy)

Copy-constructor for the object 'local obj' (copy) (copy)

Destructor for object 'local obj'

Exception treating

Hello from the object 'local obj' (copy) (copy)

Destructor for object 'local obj' (copy) (copy)

Destructor for object 'local obj' (copy)

After the catch clause

Destructor for object 'main obj'

Remarks.

1. The function f from the Object class generates an exception, so that after the

message from 3rd line, it is created by copying an exception object in the

throw statement (message in line 4).

2. Because the catch clause is acting like a function, it is created (by copying

the object generated by the exception) an object of the Object class for the o

parameter (5th line message). The local object is destroyed (line 6) and the f

function execution ends, the program execution continues in the catch clause

from the main function.

3. After displaying the message from the hello function, the body of the catch

clause ends and the destructor for the o object is called. In addition, the object

associated to the exception generated by the throw statement (messages from

lines 9 and 10) is also destroyed.

4. After the main function ends, the object out from the main function is also

destroyed.

If is desired as an object exception not be copied again in the catch clause (passing

by value), a reference to the exception object can be specified in the place of the

respective object.

For example, if in the previous program, the catch clause is modified as follows:

catch (Object &o) {

the program output is:

Constructor for object 'main obj'

Constructor for object 'local obj'

Function f from the object 'main obj'

Copy-constructor for the object 'local obj' (copy)

Destructor for object 'local obj'

Exception treating

Hello from the object 'local obj' (copy)

Destructor for object 'local obj' (copy)

After the catch clause

Destructor for object 'main obj'

12.5 Classes and class hierarchies for handling exceptions

For the determination of a catch clause that will be executed in a sequence of several

clauses, the compiler determines the first catch clause from the sequence that

matches the object type thrown by the exception.

If a program can throw several exceptions related to each other, the classes associated

to these exceptions can be combined into a class hierarchy, using public inheritance.

In this case, the selection of the catch clauses must be treated carefully. Because of

the upcasting mechanism, when several handlers are specified after a try block, they

order is important: handlers that use as parameters objects from the bottom of the

class hierarchy must be specified first.

Example 12.6. The following program uses a class hierarchy containing three

exception classes.

#include <iostream>

using namespace std;

class Advertisement {};

class Error: public Advertisement {};

class FatalError: public Error {};

void f() {

 int n;

 cout << “Error level: “;

 cin >> n;

 switch (n) {

 case 1: throw Advertisement();

 case 2: throw Error();

 case 3: throw FatalError();

 }

}

int main() {

 try {

 f();

 }

 catch(Advertisement) {

 cout << "" << endl;

 // The next handlers are covered by the precedent

 }

 catch(Error) {

 cout << "" << endl;

 }

 catch(FatalError) {

 cout << "" << endl;

 }

 return 0;

}

One can observe regardless of the type of the thrown exception, always the first

handler is selected. A correct version of the main function is the following:

int main() {

 try {

 f();

 }

 catch(EroareFatala) {

 cout << " Treating exception FatalError << endl;

 }

 catch(Eroare) {

 cout << " Treating exception Error " << endl;

 }

 catch(Avertisment) {

 cout << " Treating exception Advertisement " << endl;

 }

 return 0;

}

A commonly variant for class hierarchies related to exceptions is the use of

polymorphism and pointers to the base class. In this case the base class of the

hierarchy is indicated to be an abstract class.

Because in this case pointers are used for sending information related on the current

exception, there are certain rules that must be used:

- Each catch clause has as parameter a pointer to the base class of the class

hierarchy,

- Objects related to exceptions are created in the try block,

- These objects (created in the try block) must be destroyed explicitly within

the exception handlers using delete operator.

Example 12.7. The following program defines a class hierarchy with an abstract base

class. The pure virtual function ExceptionProcessing is overridden in all derived

classes for processing exceptions.

#include <iostream>

using namespace std;

class Exception {

protected:

 char m[20]; // Exception message

public:

 virtual ~Exception() { }

 virtual void Exception processing() = 0;

friend ostream& operator<<(ostream& os, Exception& e)

 { return os << e.m; }

};

class Advertisement: public Exception {

public:

 Advertisement(char* s) {

 strcpy(m, s);

 }

 void Exception processing() {

 cout << m;

 exit(1);

 }

};

class Error: public Exception {

public:

 Error(char* s) {

 strcpy(m, s);

 }

 void Exception processing() {

 cout << m;

 exit(1);

 }

};

class FatalError: public Exception {

public:

 Fatal Error(char* s) {

 strcpy(m, s);

 }

 void Exception processing() {

 cout << m;

 exit(1);

 }

};

void f() {

 int n;

 cout << "Error level: ";

 cin >> n;

 switch (n) {

 Exception* e;

 case 1:

 e = new Advertisement("Advertisement !");

 throw e;

 case 2:

 e = new Error("Error !!");

 throw e;

 case 3:

 e = new Fatal Error("Error fatal !!!");

 throw e;

 }

}

int main() {

 try {

 f();

 }

 catch(Exception* e) {

 e->Exception processing();

 delete e;

 }

 return 0;

}

C++ programs may use predefined classes of the standard library related to

exceptions. This class hierarchy has a base class called exception. The public

function what of the class exception can be used for displaying a text describing

the error.

From the class exception there are derived two other classes: logic_error for the

errors detected at compilation phase, and runtime_error, for errors detected at

runtime.

The main classes derived from logic_error are:

• domain_error – reports violation of a precondition

• invalid_argument – invalid argument for a function

• length_error – an object with a length greater than NPOS (the

maximum value that can be represented)

• out_of_range – outside of the range

• bad_cast – an erroneous dynamic_cast operation

The main classes derived from runtime_error are:

• range_error – a post-condition violation

• overflow_error – wrong arithmetic operation (overflow)

• bad_alloc – wrong memory allocation

12.6 Overloading new and delete operators

Overloading of these operators is described in this chapter, because these functions,

generally, use exceptions. The initial versions of the new operator return the NULL

pointer when memory allocation has failed. The current version uses exceptions for

handling these cases, even if most of the C++ compilers support both styles.

The operators described in Chapter 9 can be overloaded for classes defined by the

programmers. The operators new and delete can be overloaded in several ways:

- for user defined classes,

- at global level,

- for arrays (new[] and delete[]).

Overloading the operators new and delete must be careful performed, because the

semantics of these operators must be preserved.

12.6.1 Handling exceptions when memory allocation fails

The main task of the new operator is to determine a free memory zone (with an

appropriate length) and to return its starting address. As a consequence, such an

operator must have at least one parameter of size_t type and it returns a void*

type.

The modern versions of the C++ compilers use exceptions when they cannot allocate

the required memory zone. In this case it is called a specific function, named handler

of the allocation error. This handler can throw an exception of bad_alloc type, or

the exception can be thrown by the operator itself.

The main structure of a new operator can have the following form, although in reality

is can be more complicated:

void operator new(size_t size) {

 // allocation of a ‘size’ bytes of memory

 if (/* successful allocation */)

 return (/* pointer to the start zone address */);

 set_new_handler(handler);

 (*handler)();

 throw bad_alloc();

}

In the above code handler represents a pointer to the handler function that returns

void. The predefined function set_new_handler allows setting the function which

will be the error allocation handler.

In general, the goal of the allocation handler is to collect the memory zones which are

not used in the program (garbage collection), but this is a difficult operation.

Usually, the allocation handler frees a certain memory zone and displays a warning

message. For this, it is used a certain memory zone, which is dynamic allocated at the

start of the program, and this memory can be accessed and freed by the handler.

Example 12.8. The next program uses the set_new_handler function, for setting a

specific handler for allocation errors.

#include <cstdio>

#include <new>

using namespace std;

// Memory block used for displaying an error message

char *buff = new char[128];

void my_new_handler() {

 // It frees the block ‘buff’

 delete buff;

 printf("Allocation failed\n");

}

int main() {

 // New handler declaration

 set_new_handler(my_new_handler);

 // Pointer to a block memory

 int* p;

 for (double k=0; ; k++)

 p = new int[1024];

 // ...

}

12.6.2 Overloading global operators new and delete

The new and delete operators can be overloaded at global level (outside of any

classes). In this case they override the operators with the same name from the

standard namespace std, so that they cannot be used. For this reason, they must

carefully implemented..

Usually, overloading global operators new and delete is justified when the memory

allocation method used by the standard new and delete operators is not satisfactory

for certain applications, especially for real time applications, or in the case when the

memory fragmentation can appear.

For memory allocation the standard allocation functions (malloc, calloc,

realloc) can be used, and for freeing memory, the free function. The delete

operator has a void* type parameter and it deallocates the previous allocated

memory using the pointer specified as parameter.

When these operators are used for the creation/destroying of some objects, in

addition, these operators call constructors/destructors for respective classes. This call

cannot be controlled by the program; it is managed directly by the compiler.

Example 12.9. The following programs uses overloading of global new and delete

operators.

#include <cstdio>

#include <cstdlib>

using namespace std;

void* operator new(size_t sz) {

 printf("Allocation %d bytes\n", sz);

 void* m = malloc(sz);

 if(!m) puts("Allocation error\n");

 return m;

}

void operator delete(void* m) {

 puts("Free");

 free(m);

}

class A {

 int i[100];

public:

 S() { puts("Constructor A"); }

 ~S() { puts("Destructor A"); }

};

int main() {

 puts("Allocation/free int");

 int* p = new int(47);

 delete p;

 puts("Allocation/free A");

 A* a = new A;

 delete s;

 puts("Allocation/free A[5]");

 A* sa = new A[5];

 delete []sa;

 return 0;

}

The functions printf and puts were used because at the creation of the objects

cin, cout and cerr, the operators new and delete are used.

12.6.3 Overloading operators new and delete for classes

When operators new and delete are overloaded for a specific class, they perform a

subsequent call for an appropriate constructor/destructor of the corresponding class.

Because the actions from these operators do not have access to the related object (the

constructor is called after the specific operations of the new operator are performed,

and the actions of the destructor are performed in the reverse order), the function

operator new and operator delete must be static functions, even they are not

explicit declared.

When operators new and delete are overloaded for classes, they may use global

operators in order to allocate memory for data members. However, there are cases

when calling global operators is not necessary. For example, one can use a specific

scheme for memory allocation, not in the heap zone, but in the zone of static data.

When the memory is allocated in the heap zone, using exceptions is indicated, both in

the overloaded new operator, and in the functions that use this operator.

Exemplul 13.10. The following programs use overloading new and delete operators

for a class, using the heap zone memory.

#include <new>

#include <iostream>

using namespace std;

#define dim 10

class X {

 int n;

public:

 X(int a = 0): n(a) { }

 static void * operator new(size_t) throw(bad_alloc);

 static void operator delete(void*);

 void Print() const { cout << n << endl; }

};

void* X::operator new(size_t) throw(bad_alloc) {

 void *memory;

 cout << "Operator new\n";

 try { // Memory allocation

 memory = ::operator new(sizeof(X));

 }

 catch (bad_alloc&) { // Rethrowing exception

 throw;

 }

 return memory;

}

void X::operator delete(void* memory) {

 cout << "Operator delete\n";

 if (memory == 0) {

 return;

 }

 ::delete(memory);

}

int main() {

 X* pv[dim];

 int k;

 try {

 for (k=0; k<dim; k++) {

 pv[k] = new X(k);

 }

 }

 catch(bad_alloc) {

 cerr << "Allocation error\n";

 }

 for (k=0; k<dim; k++) {

 pv[k]->Print();

 }

 for (k=0; k<dim; k++) {

 delete pv[k];

 }

 return 0;

}

Remark. The value of the parameter size_t of the new operator is initialized by the

compiler.

For a class can exist several overloaded functions for operators new and delete. In

this case they can have a different number of parameters, but always the first

parameter has the type size_t and its value is initialized by the compiler. The other

parameters can be used for realizing some specific operations.

The syntax for calling these operators is quite different. In the case of the operator

new, all parameters, starting to the second parameter, are specified between the

keyword new and the name of the corresponding class. For example, if for a class X,

an operator new was defined, having the following form:

static void* operator new(size_t, int, int)

throw(bad_alloc);

then, calling this operator can have the following form:

X* p = new (5, 3) X;

In the case of operator delete, to be able to specify the variant of the function

delete that will be called, one can use its explicit call. For example, for an operator

of the form:

static void operator new(void*, int, int);

can be called by using the following syntax:

 p->X::~X(5, 3);

13.6.4. Overloading operators new[] and delete[]

Even in the case when new and delete have been overloaded for a specific class, if

an array of objects of this class must be allocated, then the compiler calls global

operators. For example, if for the class X from previous example, an array of the

following form is declared:

X v[dim];

one can observe that the operators new and delete, overloaded for the class X, are

not called (messages specified in these operators are not displayed).

In these cases it is necessary to overload operator for memory allocation and

deallocation for arrays: new[] and delete[].

For example, for the following class Object, two operators new[] and two operators

delete[] have been overloaded.

class Object {

 int n;

public:

 void* operator new[](size_t size);

 void* operator new[](size_t size, int extra);

 void operator delete[](void *p);

 void operator delete[](void *p, int extra);

};

The first variant of new[] represents the main form, which returns a void* pointed,

and it receive a size_t value. This value represents the number of memory bytes that

have to be allocated for the desired number of objects (instances of the Object class).

A usual implementation of this operator uses the global operator new, as in the

following example:

void *Object::operator new[](size_t size) {

 return ::new Object[size/sizeof(Object)];

}

As in the case of operator new, also in this case additional parameters can be

specified. For example, the second variant of the operator new[] of the class Object

uses an additionally parameter for initialization of elements.

void *Object::operator new[](size_t size, int extra) {

 unsigned n = size / sizeof(Object);

 Object* op = ::new Object[n];

 for (unsigned idx = 0; idx < n; idx++) {

 op[idx].value = extra;

 }

 return op;

}

The following declaration performs, in addition, the initialization of the array

components:

 Object* ov = new(120) Object[15];

The first variant of the operator delete[] from the class Object represents the main

form of this operator. It receives as parameter, the address of the array of objects,

before allocated with Object::new[]. A usual implementation of this operator uses

the global operator delete[], as in the following example:

void Object::operator delete[](void *p) {

 ::delete[] reinterpret_cast<Object *>(p);

}

The second variant of the operator delete[] allows to specify some additional

parameters. In this case, when calling delete[], the list of the parameters is

specified after brackets. For example:

 delete[] (new Object[5], 100);

