
 5-1

Chapter 5

Elementary Educational Computer

§1. General structure of the Elementary Educational
 Computer (EEC)

● The EEC conforms to the 5 units structure defined by von

Neumann's model (1.1)

● All units are presented in a simplified form consisting of
only basic components. (1.2)

● Structure of the EEC presented in Annex 5. (1.3)

§2. Presentation of the EEC units

§2.1. Memory Unit (MU)

● One level memory consisting of the Main Memory
(MM)

● Every location identified by its own address on k
bits. (2.1.2)

● Communication with other units through:
a) MAR–Memory Address Register
b) MBR–Memory Buffer Register or Memory

Data Register

(2.1.3)

● Organization of the memory: 2k locations of n bits,
thus 2k ×n memory array (2.1.4)

● Two operations are allowed: READ and WRITE,
controlled by the Control Unit (2.1.5)

● Description of the READ cycle
1) Address placed in MAR
2) READ control signal
3) Extraction from the addressed location
4) Store data in MBR

(2.1.6)

(2.1.1)

 5-2

● Description of the WRITE cycle
1) Address placed in MAR
2) Data transferred in MBR
3) WRITE control signal
4) Store data in the addressed location

(2.1.7)

● Types of WRITE and READ commands issued by
the Control Unit: two independent(R,W) or one
common (R / W)

(2.1.8)

§2.2. Arithmetic and Logic Unit (ALU)

● Implements binary arithmetic on n bits (2.2.1)
● Dimension of ALU operational units is assumed n (2.2.2)
● All registers inside ALU are n-dimensional (2.2.3)
● ALU contains a simple register file and a

processing device (2.2.4)

● Processing section consists of an Adder/Subtractor
and a Shifter (2.2.5)

● Register file consists of an Accumulator, three
auxiliary registers RX1, RX2, RX3 and a Flag
(Status) register (FR)

(2.2.6)

● ALU performs a limited set of primitive
operations (2.2.7)

● Communication between ALU and CU: CU sends
the commands via control lines, whereas ALU
sends the status of the registers content (status
signals, flags, condition signals), usually of the
Accumulator.

(2.2.8)

● Possible set of status bits: zero, parity, sign,
overflow etc. (2.2.9)

● Operands are extracted either from register file
(local memory) or from MM. Extraction from
MM implies a READ cycle.

(2.2.10)

● Role of the Accumulator: it is a special register
communicating directly with the processing
device, that contains one of the operands and
where the result after processing is stored.

(2.2.11)

 5-3

● The Arithmetic and Logic operations performed in

ALU are on one or two operands (monadic or
diadic operations).

(2.2.12)

§2.3. Control Unit (CU)

● The CU is formed of the following blocks:

1) Program Counter (PC), on k bits
2) Instruction Register (IR), on n bits
3) Function decoder (DEC L/2L)
4) Control Block (Logic Sequencer, Control

Sequencer)

(2.3.1)

● Program Counter contains a memory address
where the next instruction to be executed is stored;
since the addressing space of MM is 2k , the
dimension of PC is k (identical with the dimension
of MAR).

(2.3.2)

● PC has the incrementing facility, as well as a
parallel load facility. (2.3.3)

● Instruction Register (IR) contains the current
instruction which is in execution. (2.3.4)

● The width of IR coincides with the width of an
instruction and in the case of EEC it is n. (2.3.5)

● IR is divided in two subregisters according to the
format of the instruction. (2.3.6)

● Structure of the IR:

(2.3.7)

● The OPCODE subregister communicates with the
function decoder to interpret the current
instruction (to decide which function must be
executed)

(2.3.8)

1 L 1 K
 OPCODE ADDRESS
 SUBREGISTER SUBREGISTER

n

 5-4

● The Address subregister contains an address of the
MM where one operand is stored. In case of two
operands operation it is assumed that the other
operand is in the Accumulator.

(2.3.9)

● For reason of simplicity, there are missing the
Function Register and the Address Register. Also,
the address field contains always the effective
address of the operand (not the logical address).

(2.3.10)

● The central role in the CU is played by the Control
Block (Control Sequencer), which generates the
control signals for the other units according to the
operation (function) to be executed.

(2.3.11)

● The inputs in the Control Block are the decoded
(interpreted) function, master clock (from a Clock
Generator) and status flags (from ALU).

(2.3.12)

● Control Block is a complex sequential machine,
that is why it is also called Control Sequencer. (2.3.13)

§2.4. Input/Output units (I/O)

● In case of EEC the I/O system is composed of
simple Input/Output devices, at the lowest level a
register on n bits. They are communicating with
the ALU (Accumulator) and MM (MBR), as well
as with the Control Unit (Instruction Register).

(2.3.14)

§3. The register structure of the EEC

● Any digital system can be viewed as a union of
generalized registers and the data paths
interconnecting them. Even the memory formed of 2k
locations can be considered as formed of 2k registers, as
each location is an n-bit register.

(3.1)

● By merging ALU with CU, to form the CPU, the entire
structure of the EEC can be reduced to the following set
of registers (3.3):

(3.2)

 5-5

(3.3)

Where:

 FR = flag register (status register), on n bits
 ACC = Accumulator, on n bits
 AX1, AX2, AX3 = auxiliary registers, on n bits
 IR = Instruction Register, on n bits (3.4)
 xx = the opcode field of the instruction, on L bits
 yyyy = the address field of the instruction, on k bits
 PC = Program Counter, on k bits
 IU = Input unit, on n bits
 OU = Output unit, on n bits

● This register view of the EEC is useful for explaining

the flow of operations that take place for execution of
instructions.

(3.5)

AX1

 AX3
AX2

FR

ACC

IU

Main Memory

k n
OU

READ

zzzz+1

IR

PC

CPU

zzzz

x x y y y y

x x y y y y

2k-1 n
n

n n

WRITE

z z z z

Addresses
0

 5-6

§4. Mode of operation

§4.1 General considerations

● According to the von Neumann's principles, both
instructions and data are located in memory, in binary
coded form.

(4.1.1)

● Any instruction is executed in two major phases

 FETCH phase, consisting in extracting the
current instruction from the memory and
decoding the OPCODE field

 EXECUTE phase, consisting in effective
execution of the operation on the defined
operands (data).

(4.1.2)

§4.2. FETCH phase

● The initial address of the first instruction to be
executed is already stored in PC (4.2.1)

● The content of PC is transferred to MAR. (4.2.2)
● CU is issuing a READ command to MM and a read

cycle is initiated. (4.2.3)

● The content of the read location, representing an
Instruction, is transferred to MBR. (4.2.4)

● From MBR the instruction is transferred to IR from
CU. (4.2.5)

● The subregister containing OPCODE, on L bits, is
transferred to the Function Decoder. (4.2.6)

● Function Decoder decodes the OPCODE and informs
the Control Block of the CU, which, in turn, issues the
appropriate control signals to the other units.

(4.2.7)

● CU is incrementing the PC to point to the next
 instruction.

(4.2.8)

 5-7

● In a simplified RTL (Register Transfer Language) the
FETCH phase can be described in the following form:

1. MAR ← (PC)
2. READ
3. IR ← (MBR)
4. DEC ← (IR)OPCODE
5. PC ← (PC)+1
6. Go to EXECUTE phase

(4.2.9)
where:

 (IR)OPCODE means the content of the OPCODE
subregister of the IR;

 (PC) means the content of the PC;
 (MBR) means the content of the MBR.

● Schematically, this phase can be represented in the
register view of the EEC as follows (4.2.11) (4.2.10)

(4.2.11)

READ

AX1

 AX3
AX2

FR

IR

PC

CPU Memory

ACC zzzz

x x y y y y
4 3

2

1

 z z z z

x x y y y y

5

zzzz+1

IU

OU

 5-8

§4.3. EXECUTE phase

● As stated before, the FETCH phase is common for all
Instructions, whereas EXECUTE phase is specific for
each kind of Instruction.

(4.3.1)

● In what follows there are described extensively several
simple Instructions that are executed in EEC.

(4.3.2)

A) ADD, address

● This represents the addition of two operands Instruction,
where the first operand is in the Accumulator, the
second operand is in the memory at the address (yyyy),
while the sum is saved in the Accumulator. In a
symbolic manner this operation can be described as
follows:

 ACC ← (ACC) + (Memory)ADDRESS

(4.3.3)

● The address (yyyy) of the second operand is given in the
Instruction being stored in the (IR)ADDRESS subregister.

(4.3.4)

● The entire operation takes place in the following steps:
1. Transfer the address field from (IR)ADDRESS into

MAR, which means transfer yyyy into MAR.
2. Initiate a READ operation from the location having

the address yyyy.
3. Transfer of the extracted operand into the ALU, in

register RX1.
4. Perform the addition between the contents of ACC

and AX1, then store the result in the Accumulator
5. Change the corresponding flags from the FR.
6. Go to the next FETCH phase

(4.3.5)

● In RTL notation:
1. MAR ← (IR)ADDRESS
2. READ
3. (RX1) ← (Memory) ADDRESS
4. ACC ← (ACC) + (RX1)
5. FR ← New flags
6. Go to FETCH phase

(4.3.6)

 5-9

● In the register view of the EEC the realization of ADD
Instruction is presented in (4.3.8)

 (4.3.7)

 (4.3.8)

B) SUB, address
● This represents the subtraction operation, where the

subtrahend, that is the first operand, is in the
Accumulator, while the minuend, that is the second
operand, is in the memory at the address specified
explicitly in the instruction.

 (4.3.9)

● The realization of the subtraction assumes reading from
the memory of the second operand and transferring it
into the ALU, in the register RX1. After that, the
subtraction takes place in the processing device and the
difference is saved in ACC, accompanied by the
corresponding changes of flags in the FR.

(4.3.10)

● Symbolically:
 ACC (ACC) (Memory)ADDRESS

(4.3.11)

● The entire operation takes place in the following steps:
1. Transfer the address field from (IR) ADDRESS into

(4.3.12)

RX1

RX3

RX2

FR

IR

PC

CPU Main Memory

ACC

READNEW FLAGS

OPERAND 2

OPERAND 1

5

xx yyyy

 zzzz+1

4
ADD

4 result

yyyy

2

1

OPERAND 2

3

 5-10

MAR, which means transfer of yyyy into MAR.
2. Initiate a READ cycle, to extract the content of the

location having the address yyyy
3. Transfer of the extracted operand in ALU, in the

register RX1.
4. The subtraction operation takes place in the

processing device by subtracting the content of
RX1 from the content of ACC; the difference is
saved in the Accumulator.

5. Change the appropriate status bits in FR
6. Go to the next FETCH phase.

● In RTL notation:
1. MAR (IR) ADDRESS
2. READ
3. RX1 (Memory)ADDRESS
4. ACC (ACC) (RX1)
5. FR New Flags
6. Go to FETCH phase

(4.3.13)

● In the register view the execution of SUB instruction is
represented in the next figure (4.3.15)

(4.3.15)

RX1
5 3

2

yyyy

1

OPERAND 2

xx yyyy

 zzzz+1

4
4SUBTRACTION

difference4

 RX3

RX2

FR

IR

PC

CPU Main Memory

ACC

READ

OPERAND 1

NEW FLAGS

OPERAND 2

(4.3.14)

(4.3.12)

 5-11

C) LOAD, address

● The LOAD Instruction ensures reading of an operand
from the memory at the address (yyyy) specified in the
instruction and transferring it into the Accumulator.

(4.3.16)

● Symbolically:
 ACC (Memory)ADDRESS

(4.3.17)

● The entire operation takes place in the following steps:
1. Transfer the address field from (IR) ADDRESS into

MAR, which means transfer yyyy into MAR.
2. Initiate a READ operation from the location with

the address yyyy.
3. Transfer the extracted operand into the ALU, in

the Accumulator and change the flags from FR.
4. Go to the next FETCH phase.

(4.3.18)

● In the register view of the EEC the realization of LOAD
Instruction is presented in the next figure (4.3.20):

(4.3.19)

(4.3.20)

RX1

RX2

FR

IR

PC

NEW FLAGS

OPERAND

 RX3

ACC

xx yyyy

 zzzz+1

yyyy

READ

3

CPU Memory Unit

4
2

1

OPERAND

 5-12

● Observation: if in the OPCODE there is provided a

subfield specifying the destination register from the
ALU, then there can be defined variants of the LOAD
instruction:

 RX1 (Memory)ADDRESS
 RX2 (Memory)ADDRESS
 RX3 (Memory)ADDRESS

(4.3.21)

D) STORE, address

● The STORE Instruction ensures the transfer of the content
of the Accumulator into the memory and storing it in the
location having the address (yyyy) given in the
instruction.

● Symbolically:
 Memory ADDRESS (ACC)

● The entire operation takes place in the following steps:
1. Transfer the content of the (IR) ADDRESS into the

MAR; the content of MAR becomes yyyy.
2. Transfer the content of the Accumulator into the

MBR; in this way the operand is prepared for further
storing in the memory.

3. Initiate a WRITE operation, realising storing of the
content from the MAR into the location with the
address yyyy.

4. Go to the next FETCH phase.

● In the register view of the EEC this instruction is
represented in (4.3.26):

(4.3.23)

(4.3.22)

(4.3.24)

(4.3.25)

 5-13

(4.3.26)

● Observation: The STORE Instruction can present
variations by including in the OPCODE a subfield
specifying the source register from ALU; in this way, the
content of RX1, RX2 or RX3 can be stored in the
memory at the specified address given in the Instruction

 (Memory)ADDRESS (RX1)
(Memory)ADDRESS (RX2)
(Memory)ADDRESS (RX3)

(4.3.27)

E) JUMP, address

● This is an unconditional JUMP at the address specified in
the Instruction. The implementation is quite simple by
transferring the address yyyy from the (IR) ADDRESS into
the PC. In this way, instead of using the address (zzzz+1),
the address (yyyy) will be used in the next FETCH phase
for extracting the next instruction from the memory.

(4.3.28)

● The execution of this unconditional JUMP Instruction is
very simple:
1. (PC) (IR) ADDRESS
2. Go to the next FETCH phase.

(4.3.29)

OPERAND

RX1

RX3

RX2

IR

PC

ACC

xx yyyy

 zzzz+1

FR

yyyy

WRITE

2

CPU Main Memory

3

1

OPERAND

 5-14

● In the register view of EEC representation the execution
of this instruction is given in (4.3.30):

(4.3.30)

F) Conditional JUMP, address

● The conditional JUMP Instruction tests a condition and if
it is true then a jump takes place at the given address in
the Instruction; otherwise the normal flow of execution
continues, that is the content of PC remains unaltered, so
that the next FETCH will take place at the address
(zzzz+1).

(4.3.31)

● The test operation consists in checking a flag (a condition
bit) from the Flag Register, FR. As mentioned before,
among the usual flags the following are common:

 ZERO flag – if the content of the Accumulator is 0
SIGN flag – reproducing the most significant bit

of the Accumulator (if it is 0, then a
positive number is in the ACC, if it
is 1, then a negative number is in the
ACC)

(4.3.32)

CPU Memory

RX1

RX3

RX2

IR

PC

ACC

xx yyyy

 yyyy

FR

1

zzzz+1

yyyy

 Instruction to
be fetched

 5-15

PARITY flag – shows if the number of “1”s in the
Accumulator is odd or even

 CARRY flag – if after an addition/subtraction
 operation it was generated a carry
 from the most significant column.

(4.3.32)

● The OPCODE for this conditional JUMP will contain a
subfield to identify which flag is to be tested; thereby
there are many Conditional JUMP Instructions depending
on how many flags are defined in the architecture.

● Symbolically,
 If (condition) go to (address) else (zzzz+1)

● The steps of implementing these instructions are:
1. Test the flag defined by the OPCODE
2. If the condition is TRUE then transfer the address

from (IR)ADDRESS into the PC, and go to 4
3. If the condition is FALSE then go to 4
4. Go to next FETCH phase.

(4.3.35)

●In the register view of the EEC representation (4.3.37): (4.3.36)

(4.3.37)

Memory

zzzz+1/yyyy

xx yyyy

zzzz+1

yyyy

Next Instruction
for FALSE cond

Next Instruction
for TRUE cond

2

flag identification 1

IR

PC

CPU

Fj

switch

RX1

 RX3

RX2

ACC

FR

TRUE

(4.3.33)

(4.3.34)

 5-16

G) INPUT, address
● The address field would specify one of the set of Input

Registers representing the INPUT UNIT. In this
particular case it was used a simple input register,
therefore the address field is irrelevant. But, in general
case, there are defined 2k different addresses of input
registers.

(4.3.38)

● This Instruction reads the content of the addressed register
and transfers it into the CPU, in the Accumulator.

(4.3.39)

● Thus, symbolically:
 ACC (Input Register)ADDRESS

(4.3.40)

● The steps of implementation:
1. Identify the Input Register from the address stored in

(IR) ADDRESS
2. READ the addressed Input Register and transfer its

content into the ACC.
3. Go to next FETCH phase.

(4.3.41)

● In the register view of the EEC the execution of this
instruction is presented in (4.3.43):

(4.4.42)

(4.3.43)

RX1

 RX3

RX2

IR

FR

PC

ACC

Output Register

Input Register
READ

dddddd

xx yyyy

 zzzz+1

zzzz+1

2

CPU Memory

1

 dddddd

 5-17

H) OUPUT, address
● The address field would specify one of the set of Output

 Registers representing the Output Unit. In this particular
 case of EEC there is provided a single Output Register, so
 that the address field has no significance.

(4.3.44)

● In general case, there can be defined 2k different addresses
 of Output Registers.

(4.3.45)

● This instruction transfers the content of the Accumulator
 to the addressed Output Register and writes it in.

(4.3.46)

● Thus, symbolically:
 Output Register ADDRESS (ACC)

(4.3.47)

● The steps of the implementation:
1. Identify the Output Register from the address existing in

(IR)ADDRESS
2. Transfer the operand from ACC to the identified Output

Register and write it in the register.
3. Go to next FETCH phase.

(4.3.48)

● In the register view of the EEC the execution of this
 instruction is presented in (4.3.50):

(4.3.49)

(4.3.50)

IR

PC

zzzz+1

Main Memory

RX1

 RX3

RX2

ACC

FR

xx yyyy

 zzzz+1

CPU

 dddddd

dddddd

WRITE

2

1

Output Register

Input Register

