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Chapter 4 

Central Processing Unit 
 
§1. CPU organization and operation flowchart 
 
§1.1. General concepts 

 
• The primary function of the Central Processing Unit is to 

execute sequences of instructions representing programs, 
which are stored in the Main Memory. 

(1.1) 

• As mentioned before, the CPU consists of the ALU and 
CU. (1.2) 

• To carry out its role the CPU must be an interpreter of a 
set of instructions at machine language level. (1.3) 

• Program execution is carried out as follows: 
1. The CPU transfers instructions and, when 

necessary their input data, called operands, from 
the Main Memory into the registers of the CPU. 

2. The CPU executes the instructions in their stored 
sequence (one after another) except when the 
execution sequence is explicitly altered by a 
branch instruction. 

3. When necessary, the CPU transfers results from 
the CPU registers into the Main Memory. 

(1.4) 

• Sometimes CPUs are called simply Processors. (1.5) 
• CPU- memory communication: 
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• Consequently, there exist streams of instructions and data 
between the Main Memory and the set of general registers 
that forms the CPU’ s local memory. 

(1.7) 

• The CPU is significantly faster than the Main Memory, 
that is it can read from or write in the CPU’s registers 5 to 
10 times faster than it can read from or write in the Main 
Memory (MM). Nowadays, VLSI technology tends to 
increase the CPU/ Main Memory speeds disparity. 

(1.8) 

• As mentioned before to remedy this drawback, the 
memory is organized in a hierarchical way; a new layer of 
memory, called Superoperative Memory (SOM) is 
placed between the Main Memory and CPU. At present, 
the SOM is represented by the CACHE Memory (CM); 
this CM is smaller and faster than MM and can be placed 
wholly or in part on the same chip as CPU (the so called 
internal Cache Memory). 

(1.9) 

• The main role of CM is to ensure a memory read or write 
operation in a single clock cycle, whereas a MM access 
(bypassing the CM memory) takes several clock cycles. 

(1.10) 

• The CM and MM are seen by the CPU as forming a 
single memory space, because the operation of CM is 
totally transparent to the CPU. 

(1.11) 

• CPU – memory communication with a cache: 
 
 
 
 
 
 
 
 

(1.12) 

• CPU communicates with I/O devices in much the same 
way as it communicates with the Main Memory. The I/O 
devices are associated with addressable registers called 
I/O PORTS. The CPU can store or extract a word from 
I/O PORTS (the OUTPUT and INPUT operations). This 
subject is discussed in the further chapter. 

(1.13) 
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• The programs executed by the CPU are divided into two 

broad groups: user programs and supervisor programs. (1.14) 

• A user program, known also as application program, 
handles a specific application, whereas a supervisor 
program manages various routine aspects of the entire 
computer system on behalf of the users and it is part of 
the system software named the operating system. As 
examples of supervisor programs there are mentioned the 
control of transferring data between Secondary Memory 
and Main Memory, control of a graphic interface etc. 

(1.15) 

• In a normal operation any CPU switches between user 
programs and supervisor programs. (1.16) 

 
§1.2. Flowchart of CPU operation 
 
• It is generally useful to design CPUs that can interrupt 

their current program in execution and pass to another 
needed program; such requests can be received from I/O 
units, the secondary memory etc. and are materialized in 
interrupt signals. If accepting an Interrupt Request (IR) 
the CPU suspends the execution of the current program 
and transfers execution to an appropriate interrupt – 
handling program (called also interrupt service routine). 

(2.1) 

• As interrupts need usually a fast response, the CPU must 
check frequently for the presence of Interrupt Request 
(IR). This happens at the beginning of any Instruction 
Cycle. 

(2.2) 

• The mechanisms of interrupting the CPU operation will 
be treated extensively later. (2.3) 

• Another special mechanism of interrupting CPU is related 
to DMA implementation, where the DMA controller 
takes the control of the system bus to ensure a fast 
transfer of data to/from the Main Memory, without 
participation of the CPU. 

(2.4) 

• The DMA organization and operation is presented in the 
next paragraphs. (2.5) 
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• The flowchart describing roughly a CPU operation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2.6) 

• The actions of the CPU during an Instruction Cycle are 
defined by a sequence of microoperations, each of which 
typically involving a register – transfer operation. 

(2.7) 
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• The time required for the shortest CPU operation 
represents the CPU clock period Tclock and is a basic unit 

of time for measuring CPU actions. (Tclock = 
1
f

, where f 

is the  clock frequency measured in MHZ or GHZ). 

(2.8) 

• When using a Cache Memory it can be assumed that 
FETCH phase requires one CPU clock cycle and 
EXECUTE phase requires another CPU clock cycle. 

(2.9) 

 
§1.3. General structure of a CPU 
 
• CPU is made up of the Control Unit ( CU ) and of the 

Arithmetic and Logic Unit ( ALU ); it is also called the 
processor. 

  CPU = ALU + CU 

(3.1) 

• CPU must communicate with the other units of a digital 
computer: Memory Unit, Input Units and Output Units. 
CPU is issuing addresses, data, control signals and is 
receiving instructions, data, status signals, interrupt 
requests. This communication is carried out through a 
System Bus. Therefore, an obligatory component of the 
CPU is an interface for the System Bus referred to as Bus 
Control block (containing drivers, buffers, direction 
selectors). In this way, CPU is extended with this 
Interface ( IF) and becomes : 

  CPU = ALU + CU + IF 

(3.2) 

• The System Bus is formed of several subbusses each with 
its particular tasks. Most important are : Address Bus, 
Data Bus, Control Bus. 
Address Bus is unidirectional emanating from the CPU 
and reaching the Memory Unit and Input/Output Units. 
Data Bus is bidirectional carrying both instructions and 
data. 
Control Bus is a mixed Bus containing the Control Lines, 
representing commands to different units to perform 
actions, as well as Status lines, representing condition 
bits  supplied by the external units to CPU. 

(3.3) 
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• Control Unit is formed of three functional blocks: 
 Instruction block 
 Address block 
 Control Sequencer/Control Generator block 

(3.4) 

• The component blocks of the Control Unit must satisfy 
realisation of the following major tasks: 

 Extraction of the current instruction from 
memory  

 Transferring  the instruction in an Instruction 
Register  

 Storing fields of the instruction  in a Function 
Register and in an Address Register. 

 Decoding the OPCODE and generation of the 
corresponding control signals on control lines 

 Determination of the address of the next 
instruction 

 Identifying the effective address of the operands 
 Transferring the designated operands in ALU 
 Performing the operation (function) provided by 
the OPCODE 

 Storing the result 

(3.5) 

• The Instruction block consists of: 
 Program Counter ( PC ) 
 Instruction Register ( IR ) 
 Function Register ( FR ) 
 OPCODE Decoder ( DEC ) 

(3.6) 

• Program Counter is a pointer to the next instruction to 
be executed; it is a register with incrementing facility and 
parallel load facility. 

(3.7) 

• The content of the PC is used during the Fetch phase to 
read the memory and to extract the instruction to be 
executed by the CPU. 

(3.8) 

• The current fetched instruction is stored in the Instruction 
Register (IR); the operation code field is transferred in the 
Function Register (FR) the content of which is decoded 
(interpreted) by the Function Decoder allowing 
identification of the operation. 

(3.9) 
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• The Address block consists of: 

 Address Register (AR) aimed at storing the logic 
address contained by the address field of the 
instruction in execution. 

 Effective address computation device, that has the 
task to apply specific mechanisms for 
determination of the effective address of the 
operands from the logic address given in the 
address field of the instruction (Addressing 
techniques) 

(3.10) 

• Control Sequencer is a complex sequential device that 
generates all commands required by the execution of the 
current instruction, as well as required by the automatic 
running of the program. The decision is taken based on 
decoded function, on the content of the Status (Flags) 
Register, on external status signals, the current phase of 
the Instruction Cycle. 

(3.11) 

• The ALU contains a set of general registers, constituting 
the local memory, aimed at storing the partial results, 
operands, the processing device (implementing arithmetic 
and logic operations), an Accumulator register, an 
operand/buffer register, the status ( flags) register etc. 

(3.12) 

• The Status Register consists of a set of condition bits 
representing different features associated to the generated 
result (sign, carry, parity, zero etc) 

(3.13) 

• These blocks of the CPU are interconnected through 
internal buses: internal data bus, internal address bus, 
internal control/status lines. 

(3.14) 

• The general structure of a CPU is presented in Annex 1. 
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§1.4. The evolution of CPU during the FETCH phase 
  

• As specified previously an instruction cycle consists of 
two main phases named FETCH phase and EXECUTE 
phase. 

(4.1) 

• During FETCH phase only a part of the CPU is involved: 
the Instruction block and the Control Sequencer, as seen 
in the figure depicted in Annex 2. 

(4.2) 

• The steps of running this phase are: 
1. From PC the instruction address is transferred into 

MAR ( Memory Address Register ) of the 
Memory Unit. 

2. From Control Sequencer the command READ is 
issued and after the end of transient processes 
occurred in the memory, the current instruction is 
extracted from the addressed location and is stored 
in MBR (Memory Buffer Register ) of the 
Memory Unit. 

3. From MBR the instruction is transferred into the 
Instruction Register (IR) of the CU, in particular 
in the Instruction block, and the OPCODE  field is 
transferred into the Function Register.. 

4. The address field is transferred into the Address 
Register of the Address block. 

5. From the Function Register the OPCODE is 
applied on the inputs of the Function Decoder 
which decides the nature of the current operation. 

6. PC is incremented by a command issued by the 
Control Sequencer, to prepare it for the next 
instruction to be fetched from the memory. 

 

(4.3) 

• Hence, at the end of the FETCH phase the content of the 
PC is prepared to read the next instruction, in the Address 
block, in the Address Register, it is stored the address of 
the operand required for performing the current operation 
(function), the Control Sequencer is ready to issue the 
commands for the identified operation. 

(4.4) 
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• From the figure depicted in Annex 2 it can be seen that 
the dimension of the memory array was assumed 2k n×  
which points to the fact that an address is defined on k 
bits and the operands are on n bits. 

(4.5) 

 
§1.5. The evolution of CPU during the EXECUTE phase 
 
• The presentation assumes an arithmetic or logic operation 

defined in the instruction (5.1) 

• During the EXECUTE phase it is mainly involved the 
ALU, the Address block from the CU, and the Control 
Sequencer, as seen in figure depicted in Annex 3. 

(5.2) 

• The steps of the evolution during the EXECUTE phase: 
1. The Address Register supplies to the Effective 

Address Calculation device the logical address that 
was contained in the address field of the instruction. 
In modern computers it is customary to use different 
addressing techniques, so that the effective address 
of the operand rarely coincides with the logical 
address included in the instruction. By simple 
arithmetic operations from the logical address it is 
determined the effective address of the operand. 

2. The effective address is sent to the Memory Unit and 
stored in MAR (Memory Address Register). 

3. The operand is read from the location of the memory 
having the address specified by the MAR. To realize 
this, Control Sequencer issues a READ command. 
The operand is stored in MBR ( Memory Buffer 
Register) 

4. The operand is transferred in the ALU, in the 
buffer/operand register. The action defined by steps 
1, 2, 3 and 4 is called Fetch Data. It is assumed that 
the other operand is stored in the Accumulator. 

5. The processing device from ALU is performing the 
operation imposed by the OPCODE, under control of 
the Control Sequencer. The commands are 
distributed through Control Lines. 

(5.3) 
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6. The result is stored in the Accumulator and the 

condition bits are generated and saved in the Status 
(Flag) Register. The condition bits, called also flags, 
refer to different particular characteristics of the 
result, like the sign, carry setting up, parity, zero 
value, etc; such condition bits ( flags ) are necessary 
for deciding the execution of some particular 
instructions like, for instance, conditional jumps. 

(5.3) 

• Some instructions do not use the operand from the main 
memory, instead the operand is extracted directly from a 
general register that exists inside the ALU, in the local 
memory. In general, there is a group of 2w  general 
registers, so that it must be specified  an address of the 
register from the register file and by means of a register 
address decoder it is identified the needed register 
containing the operand. 

(5.4) 

• In such cases, the FETCH Data action is replaced by the 
identification of the needed register from ALU, its 
reading and transferring of the operand into the buffer 
operand register associated to the processing device (steps 
designated 2 ,3 , and 4′ ′ ′  in figure from the Annex 3. 

(5.5) 

• There exist variations in organization of CPUs, depending 
on design criteria, adopted architecture, nature of control 
unit, set of machine level instructions etc. 

(5.6) 
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§2. Techniques for balancing the speeds of CPU and main  
       memory 
 
§2.1. General considerations 

 
• The memory system has a hierarchical structure: 

secondary, main, local. 
• The Main Memory contains program and data that are 

currently being processed by the CPU; therefore it is 
considered the “on-line” level of memory. 

• There exists a great difference in capacity and speed of 
operation between different levels of memory hierarchy. 

(1.1) 

• Computers are organized in such a way as to 
automatically regulate the flow of information between 
levels of memory, by software or hardware means. 

• The regulation provides less frequently accessed 
information being kept in slower and more capacious 
memory levels, whereas more frequently accessed 
information being kept into the faster and less capacious 
memory levels. 

(1.2) 

• Main Memory is in communication with CPU, therefore 
their speeds of operation would be comparable ,i.e. CPU 
must get information from the Main Memory at a speed 
comparable to its own operation. 

(1.3) 

• Speed and capacity of a memory are parameters in 
conflict with each other. (1.4) 

• The ALU of the CPU is the most productive unit of a 
digital computer. (1.5) 

• Special balancing techniques between CPU and Main 
Memory were used to match their speeds. (1.6) 

• Balancing   techniques are grouped into three categories: 
a) Widening the data bus; 
b) Increasing the number of levels in memory 

hierarchy; 
c) Prefetching the next instruction. 

(1.7) 
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§2.2. Widening the memory bus 
 
• Programs and data to be processed are stored in the Main 

Memory, as well as the results are sent back to the Main 
Memory (MM), while the processing is carried out in 
CPU. 

(2.1) 

• Connection between MM and CPU is realized through a 
data bus known as  the memory bus. 

 
 
 
 
 
 
 
 
 
 
 

(2.2) 

• The speed of transferring data from / into MM represents 
the bottleneck of  any von Neumann computer; CPU 
extracts instructions and corresponding data from the MM 
one at a time. 

• This limitation is not technological in nature, but 
architectural and is aggravated by the difference in speed 
of operation between MM and CPU. 

(2.3) 

• This drawback was always present in digital computers 
throughout  their history, even nowadays, although not so 
seriously as in the past. 

(2.4) 

• A natural solution to improve the bottleneck is to widen 
the memory bus so as to extract several instructions and 
data items from the MM at a time. 

(2.5) 
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(2.6) 

• Various organizations of the MM were proposed and 
studied in practice. 

 
(2.7) 

• The critical problem is to make MM, having the 
constraint of procedural access to data, deliver a set of 
instructions and data. 

 

(2.8) 

• Another problem is to decide which instructions and data 
would be allowed in case of such wider data bus, when 
several instructions and data are extracted from MM, 
provided that the CPU operates in a procedural way, i.e. 
one instruction at a time. 

 

(2.9) 

• The natural answer is to ensure that the set of extracted 
instructions and transferred on the widened memory bus 
represents a sequence of instructions of the program 
processed  by the CPU. 

 

(2.10) 
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• Then, a natural way of solving the MM organization is 
division of MM on several parallel blocks (memory 
modules): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2.11) 

• In such organization it is possible to have simultaneous 
access to several modules, each offering an instruction  or 
data item. 

(2.12) 

• Thus, instead of having a single instruction or data 
available for the CPU, now there exists a set of m 
instructions or data items available for the CPU. But, the 
critical problem associated to Neumann’s procedurality of 
the CPU still remains – the CPU will process one 
instruction at a time. Anyhow, the access time for the  
instruction / data item is reduced, since a set of m such 
items were read simultaneously from the m memory 
blocks (modules) and inputted in the CPU via the 
widened memory bus. 

(2.13) 

• Hence, the procedurality of memory access gives rise to 
widened sets of instructions / data items, from which 
CPU will take one piece at a time. 

(2.14) 

• A sequence of instructions / data items is not anymore 
stored in locations with consecutive addresses of the MM, 
but a set of n instructions / data items are stored at the 
same address of the set of m blocks. 

(2.15) 
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(2.16) 

• The efficiency depends on the probability that the entire 
set of instructions in a widened word ( n m⋅ ) to be used 
by the CPU; frequently, there are branches in the 
program evolution that require a change of the normal 
sequence of instructions. Then a new access to the block 
of memories will be initiated to fulfil requirements of the 
branch, before all instructions / data from the previous 
word had been executed by the CPU. 

(2.17) 

(C.2.16.) 
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• Therefore, a model of prediction for sequences of 
instructions is to be considered (beyond the scope of the 
course). 

 

(2.18) 

 
§2.3.  Increasing the number of levels in the memory   

hierarchy 
 

 

• The basic idea is to improve the flow from the MM to 
CPU by inserting a smaller in size but very fast memory 
between MM and CPU. This is referred to as 
superoperative memory (at present, cache memory). 

(3.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.2) 
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• Superoperative Memory (SOM) becomes the closest layer 
of memory to the CPU. SOM becomes the “on-line” 
memory for the CPU, with the main feature that  SOM is 
now a very fast memory. 

(3.3) 

• At present, SOM implementation corresponds to the 
Cache Memory concept. (3.4) 

• Cache Memory is realized with very productive modules 
of memory having a very low access time (units or tens of 
nanoseconds). 

(3.5) 

• Cache Memory is delivering the current instructions and 
the corresponding data to CPU at speeds that are 
comparable to CPU speed. 

(3.6) 

• Cache Memory is exchanging blocks of information with 
Operative Memory. These blocks are formed of clustered 
sets of instructions and data. 

(3.7) 

• The organization and operation of Cache Memory is 
based on the program property known as “locality”. (3.8) 

• Initially the Cache Memory is empty; when CPU calls for 
the starting instruction of the program it still extracts it 
from the Operative Memory, where is the entire program. 
But, besides the starting instruction, the Cache Memory is 
filled with an entire block of instructions /data that are 
clustered around the initial instruction. 

(3.9) 

• It is assumed that the clustered instructions are to be 
executed in sequence from the Cache Memory and not 
from Operative Memory. 

(3.10) 

• When a failure (cache miss) of finding an instruction/data 
happens, a new block of instructions /data is brought from 
the Operative Memory. 

(3.11) 

• The strategy in designing the Cache Memory is to make 
transfers between SOM and OM as infrequent as 
possible. This is also based on models of prediction of 
sequences of instructions and data. 

(3.12) 

• The transfers between SOM and OM are realized under 
control of a hardware mechanism, that is transparent for 
the user. 

(3.13) 
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• Various Cache Memory administrations were 
implemented to extract the required instructions / data for 
the CPU and to implement the replacement strategy 
(exchanges between SOM and OM). 

(3.14) 

 
§2.4. Prefetching 
 

 

• As presented previously the life cycle of any instruction 
consists of two major phases: 

a) the fetch phase (F); 
b) the execute phase (E); 

 
 
 
 
 
 
 

(4.1) 

• Consequently, execution of a series of instructions has the 
following time evolution: 

 
 
 
 
 
 
 
 
 
 
 
 
 

(4.2) 

• As it was mentioned, during the Fetch phase, it is read 
the current instruction from the MM and it is decoded, 
whereas during the Execute phase, the operand (data) is 
fetched and the function is executed yielding the result. 

(4.3) 
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• The prefetching procedure consists in overlapping the 
Execute phase of the current instruction with the Fetch 
phase of the next instruction, provided that there are no 
requests of common resources. 

(4.4) 

• The new time-frame of program execution becomes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4.5) 

• It is introduced a parallelism in a time sense, in contrast to 
the spatial parallelism  that is characteristic to the 
memory bus widening technique. 

(4.6) 

• Since the sequence of the processed instructions does not 
depend only on the CPU but also on the instruction being 
carried out (like CALL, JUMP etc.), prefetching does not 
always provide the required instruction. 

(4.7) 

• In such particular cases the CPU will simply not utilize 
the extracted and decoded instructions, but will explicitly 
call for the new required instruction that has been referred 
to, like in case of branching instructions. 

(4.8) 

• Prefetching is a simple and very efficient mechanism 
frequently utilized in designing control units of the CPUs. (4.9) 
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• Prefetching principle can be extended to a more detailed 
refinement, by considering more steps of an Instruction 
Cycle. 

(4.10) 

• Among the mechanisms that have been analyzed the 
simplest is prefetching technique, because it exploits 
some properties that inherently exist in computers, 
namely the redundancy consisting  in the presence of two 
systems, MM and CPU, that are capable of working in 
parallel. 

(4.11) 

• The other two techniques are more expensive, as they 
necessitate new resources (Cache Memory, widened data 
bus). 

(4.12) 

 
§3.  An example of CPU with general registers set 

organization 
 

 

• It is considered an ALU with a register file containing 7 
general registers R1,R2, R3,R4, R5,R6, R7. There is no 
Accumulator, as in case of architectures of ALUs for 
instructions with a single address (when one of the 
operands is in the Accumulator). 

(2.1) 

• The operands, designated A and B, can be read either 
from a general register R1- R7 or from the Main Memory 
(MM), whereas the result can also be stored either in the 
register file or sent to the Main Memory. 

(2.2) 

• The general structure of this kind of ALU is presented in 
the figure from the Annex 4. (2.3) 

• The selection of operands A and B is done with two 
specialized logical devices having the role of a selector, 
called digital multiplexer. Since there are 8 potential 
sources for operands there are used digital multiplexers 
with 8 inputs {I0…I7}, which are selected by three 
selection inputs designated 0 1 2, ,A A AAS AS AS , for 
multiplexer A, and 0 1 2, ,B B BAS AS AS , for multiplexer B, 
respectively. 

(2.4) 
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• Data inputs {I1…I7}are connected to the outputs of 
registers {R1….R7}, while the input I0 is dedicated to the 
external input, coming from the memory (when a fetch 
data from the memory is realized). 

(2.5)` 

 

• The result derived from the processing device is sent 
either to one of the registers R1- R7 or to the memory. The 
selection of the destination location is carried out by 
means of a digital decoder with 3 address 
inputs 0 1 2, ,AD AD AD and 8 outputs designated {0,1,..,7}. 
The outputs (1-7) are selecting one of the registers 
{R1…R7}, by enabling the LOAD operation, while the 
output 0 is selecting the transfer of the result to the 
memory, by enabling the vectorial AND gate. 

(2.6) 

 

• With such kind of ALU the following variants of binary 
operations can be defined: 

)(*)(
)(*)(

)(*)(
)(*)(

)(*)(
)(*)(

)(*)(

MMM
MRM

RRM
MMR

RMR
MRR

RRR

i

ji

D

jD

iD

jiD

←
←

←
←

←
←

←

 
     Where:  

 DR  is a destination register from the set 
{R1…R7},  

 (Ri) is the content of the source register from 
the set {R1…R7} 

 (M) is the content of a memory location  
   *   is a general binary operator implemented in  

the processing device. 

(2.7) 
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• The selection of the first operand is realized with the 
selection vector { 0 1 2, ,A A AAS AS AS } applied on the 
selection inputs S0, S1, S2 of the digital multiplexer 
MUX8A, according to the following correspondence table: 

 
A2AS  0 0 0 0 1 1 1 1 

A1AS  0 0 1 1 0 0 1 1 

A0AS  0 1 0 1 0 1 0 1 

Selected 
Source (M) (R1) (R2) (R3) (R4) (R5) (R6) (R7) 

 
 

(2.8) 

• The selection of the second operand is realized with the 
selection vector { 0 1 2, ,B B BAS AS AS } applied on the 
selection inputs S0, S1, S2 of the digital multiplexer  
MUX 8B according to the following correspondence 
table: 

 

2AS B  0 0 0 0 1 1 1 1 

1AS B  0 0 1 1 0 0 1 1 

0AS B  0 1 0 1 0 1 0 1 

Selected 
Source (M) (R1) (R2) (R3) (R4) (R5) (R6) (R7) 

 
 

(2.9) 

• The selection of the destination for the result is realized 
with the selection vector {AD0, AD1, AD2 } applied on 
the address inputs A0 A1 A2 (where A2 is msb) of a logical 
decoder DEC 3/8, with outputs 0…7. The output 0 
enables the vectorial AND gate by sending the result to 
memory (need of a memory WRITE cycle), whereas 
outputs 1…7 are selecting as destinations the registers 
R1…R7 from the register file, as specified in the next 
table: 

(2.10) 
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2AD  0 0 0 0 1 1 1 1 

1AD  0 0 1 1 0 0 1 1 

0AD  0 1 0 1 0 1 0 1 

Selected 
Destination M R1 R2 R3 R4 R5 R6 R7 

 
 

(2.10) 

• The selection vectors for source and destination, SEL A, 
SEL B and SEL D are sent from the Control Unit, being 
generated in the Address block of the CPU. 

(2.11) 

• The selection of the effective operation (*) performed by 
the proccesing device is realized with a function selection 
vector SEL F, containing t components, which is sent 
from the Control Sequencer of the Control Unit, and 
defining 2t different operations(functions). 

(2.12) 

• It is assumed that all registers, processing device and 
local buses are on n bits; therefore, the digital 
multiplexers are of vectorial type, i.e., all input and output 
data are n bit vectors. 

(2.13) 

 
 


