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81. General Considerations

or
e There are distinguished the following two fundamental
modes of information representation: (1.1)
a) internal; 31 0
b) external; 171 Jo)7]..lof7]..Jo)7]...]0]
e Internal representations refers to the methods and means R
of representation of information in internal devices of the - (1.2)
digital computer: gates, bistables, registers, memory, etc. Byte1 Byte2 Byte 3 Byte 4
e External representation refers to the methods and means
of representation in peripheral and terminal units (usually { (1.3)
magnetic / optical media). > Double Word: f3B
e In what follows it is presented extensively the internal ouble Word: a group of 8 Bytes
representation based on use of the binary digits (bits). 0 63
e The following concepts are related to a sequence of bits ‘ 0 ‘ ‘ 7 I 0 ‘ ‘ 7 ‘
>  Byte: a group of 8 bits oo | T e
(1.4) Y v
b, | b |10, |or| b, [b, [ ]h, Byte 1 Byte 8
or
»  Half —Word: a group of 2 Bytes 3
0 15
‘ 0 | ........ ‘ 7 I 0 ‘ ........ | 7 ‘ 63 0
C -~ N -~ y ‘7“0 ............................... |7“0‘
Byte 1 Byte 2 > (1.5) Y ——"
or Byte 1 Byte 8
15 0
A OR7] .cnonn 0
& JI\ J‘
Y Y
Bytel  Byte?2 )

2-1 2-2

> (1.6)

> (1.7)




a)
b)

With regard to the internal representation the following

two kinds are identified:
Natural representation corresponding to fixed point (1.8)
representation, designated FXP ’
Normal representation corresponding to floating
point representation, designated FLP

82. Fixed-Point Representation of Numbers

82.1. Introductory concepts N

Fixed-Point representation of numbers assumes that in
all number representations a fixed position of the binary {2.1.1)
point is adopted.
In case of the extreme positions of the binary point there )
are defined: N

1) Integer Numbers — binary point positioned

at the right. >(2. 1.2)
¢ T T T b, b, |°
J
2) Fractional Numbers — binary point )
positioned at the left. (2.1.3)
-
L] b_1 b_2 ............................ b—(m—l) b_m
J
S
For fractional numbers the binary point has a double role:
1) to separate the integer part from the fractional part  2.1.3)
2) to separate the sign bit from the magnitude
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sign _ .
bit magnitude bits
- A
s —~
s | Dy [ By | e b
~— —
——
m+1 bits

82.2. Analysis of the representation ranges for positive
fractional numbers

e Assuming that the module of N is:

IN|=3.b, -2

e The positive fractional numbers are represented as follows:

(2.2.1)

3
0 1 2 m
0 | Y o b,
A —— o 222)
]S;%n 2™ different combinations
i

J
e Hence, 2" positive numbers can be defined in the }(2_2.3)
considered format (1, m)

e Extreme values:

0 1 2 m
S R [ 1 ]2 2.2.4)
0 1 2 m
Now = [0l 1] [1]51-2" L22s)
e Hence, the range of positive fractional numbers is:
N*e[2™,(1-27") }2.2.6)
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82.3. Analysis of the representation ranges for negative
fractional numbers

e The analysis is done for the three codes used for
negative number representation : sign-magnitude, two’s 2.3.1)
complement code, one’s complement code.

A Sign-Magnitude Code
e Assuming that the module of N is: \(2.3.2)

N[=3b, -2 J

e The negative fractional number |N| is represented as

follows:
0 1 2 m
I s — b_,
—— (2.3.3)
]S;%n 2™ different combinations
i

e Hence, 2™ negative numbers can be defined in the

, 2.3.4)
considered format (1, m)

—

e The extreme values:

01 2 m

N [ 1Jo]o] il (12 2.3.5)
01 2 m

Now =[N0 oo (1 —(1-2")k23.6

Hence, the range of negative numbers is:

e N e[-2"(1-2) 23.7)

=

2-5

o Two representations for O :
» Positive zero )
0o 1 2 m
10 JO [0 | oo, [0 |
2.3.8
» Negative zero >( )
0o 1 2 m
T DR [0 |
J

e Overflow (OVF)

The overflow condition arises whenever an attempt of

representing a number whose module is greater than 1—27"
occurs.

Condition: |N| >1-27" >(2.3.9)
» OVF positiveif N >1-27"
» OVF negativeif N<—(1-2"")

J
OVF — singularity case }(2.3. 10)

e Underflow (UNF)
The underflow condition arises whenever an attempt of )

representing a number whose module is less than 27"
occurs.

Condition : [N| < 27" X2.3.11)
> UNF" positive if N <27"
> UNF negativeif N >-27"

Z
UNF may not be treated as error }(2.3.12)
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Representation on the real axis :

+oC

A

OVE" Positive Overflow \

N+

max

positive
region

(1-2"")=0/11....1

f

Distance=2"

N+

min

UNF'
Positive Underflow

+2™™ - 0]00...01

~

0100....0
Lo
1100...0

UNF <
Negative Underflow
N-—7— -2 —1]00....1
negative ]
region =

—(1-2")y—>1]11....1
}OVF “Negative Overflow

‘°° )

(2.3.13)

B. Two’s Complement Code

e The discussion is restricted to the first variant
e General form for -|N|:

JReEREY
\

0 1 2 m
LRD, | B, | i, b’,
- —~ —
sign magnitude (2.3.15)
bit >
-1 . -1 .
where: Zbi'-Z' = bei 2" +2™™ (two’s complement
representation) )
e The extreme values:
) 0 1 2 m .
N ™ lll ‘ 1 ‘ ........................ ‘ 1 ‘_)_2 2.3.16)
- ~ ~
sign bit magnitude
0 1 2 m
N =l 1Jofo] [0]1]>-a-2T"
LYJ\ J
L hd 2.3.17)
sign bit magnitude
e Hence
Ne[-2",-(1-2"")] 2.3.18)



A single representation for O :

0 1 2 m
10 0 [0 |t [0 |
_/

A ~

sign bit

magnitude

The dirty 0, corresponding to minus 0, that is

1]000...0, is used by convention for representation
H—/

m

of the particular value — 2°

~N

(2.3.19)

(2.3.20)
-

Representation on real axis:

+ o0

A

OVF' Positive Overﬂow\

O[11...1>(1-2")

Distance=2"

T

o

Y

0/00..01 — +2"

0100....0 — clean zero

111...1—> -2

1100...1 >—(1-2")

N l":'laX
positive
region
N r_:u'n
UNF" <
Positive Underflow
0
UNF
Negative Underflow <
N r;ax
negative
region
N r:lin
_20

1]00...0 > —1

(by convention)
OVF Negative Overflow

o J

(2.3.21)



C. One’s Complement Code

e The discussion is restricted to the first variant }2.3.22)
e General form for -|N|:
N
0 1 2 m
LR by | Dy | oo Do
LYJ —~ — >(2.3.23)
sign bit magnitude
where bi =1- b; y,
e The extreme values:
. 0 1 2 m )
e FE N [1[opP>—2
A g _ 7(2.3.24)
sign bit magnitude
B 0O 1 2 m D
Nmin_)‘l 0 ‘0 | ..................... |0 I_)_(l_z
L\ ~ _J %2.3.25)
sign bit magnitude J
e Hence, Ne[-27",-(1-2"")] }(2.3.26)
e Two representations for O :
0 1 2 m
> 0" =10 0 [0 |, 0 |
0 1 2 m
> 0 ST T [ [1]72327)
sign bit magnitude
J
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e Representation on real axis :

+ o0

A

OVF Positive Overflow

0[11...1>(1-2")

'

T Distance=2""

+
N max B
positive
region —
+
N min (1

Positive Underflow UNF" <

zero<——>

Negative Underflow UNF 2

0100...01 > +27"

0" —0100....0
0" —>111....1

N-

max

negative
region

1/11...10 > 27"

=

=

=3
) m——

|
8

OVF Negative Overflow

1100...0 = —(1-2"")

J

(2.3.28)



83. Floating point representation of numbers

83.1. General considerations

FXP notations are convenient for representing small
numbers with bounded orders of magnitude

For instance, if
n=32 bits, then N = +(2°' =1)—>~%10"

This range is inadequate for engineering and scientific
applications

FLP uses a two part representation:

Nep =(m,e)
where m is the mantissa and e is the exponent of
FLP representation.

Any number N can be represented in the following for
N=m-r°
where:
» e=exponent (integer)
» m=mantissa (fraction)
» m, e are signed fixed point numbers
» r=radix (self-implied )

Example:
r=10
N =9.25
N =10"-0.925
m = 0.925
e=+1
For the particular case r=2
N,=m, 2%
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)
|
]
|
|
}

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

» Example:
N, =0.0101
N, =2".0.101
m=20.101
e=-1

* Main advantages of FLP notation
- drastic enlarging of the range of representation
- constant relative error of representation
* Main drawbacks of FLP notation
- cost of implementation
- arithmetic algorithms more complex

§3.2. FLP formats

* Normalized FLP representation

mel,l
me| 1.1
r

L <pm<1
2

the most significant bit of the mantissa is always 1.

» Example:
N, =0.000101
N, =0.101-27
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(1.8)

} (1.9)

} (1.10)
2.1)

\

L @2

J

L (3)




Normalized mantissa: .101

Exponent: -3 represented as integer FXP

Both mantissa and exponent are represented in FXP
notation.

Un-normalized FLP representation

r

1
|m2 < E
The most significant bits of the mantissa are zero
Example: N
N, =0.000101
NJ =0.00101-27", where m* =.00101
and e’ =-1 >
N7 =0.0101-27, where m” =.0101
and e’ =-2 )
In computer design it is preferred normalized FLP h
Notation. where the most significant position of the .
mantissa contains a non-zero digit, which is unique
for the number N. J

<
Normalizing operation consists in shifting the mantissa
and adjusting the exponent until normalization condition

is derived.
~

Rules for normalization operation:

a) for one left shift of mantissa decrement the exponent

b) for one right shift of mantissa increment the exponent
J
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(2.3)

(2.4)

2.5)

(2.6)

2.7)

(2.8)

2.9)

Example 1:
Given the un-normalized FLP binary number

N, =2%-0.001101

After normalizing operation
N, = 2%.0.1101
Thus, m=.1101,e=+2

Example 2:
Given the un-normalized FLP binary number

N, =2".1.01101

After normalizing operation:
N, =2°-0.101101
Thus,m=.101101, e=0

General format of FLP notation
—1 1 k n —
a mg | a ...a |m...m,

sign sign exp onent mantissa
exponent mantissa
where:

» o, = sign bit of the exponent

m, = sign bit of the mantissa

a; = bit of the exponent
m; = bit of the mantissa

YVVVY VY

The exponent is either unbiased or biased; the biased
exponent assumes that always the exponent is positive,

not requiring the sign bit o
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k = number of bits for exponent representation
n = number of bits for mantissa representation

(2.10)

L (2.11)

[ (2.12)

(2.13)

(2.14)

(2.15)

(2.16)



* Biased exponent:
C=E+T,suchthatC >0

where

rk
T= 5 the biasing constant
forr =2, T =2

» Modified format of FLP notation

ms C{ ... Cy m;, ... m,
—
sign bit biased mantissa
of exponent
mantissa
Example 1:
r=10
k=2
10 100
T=—0=—=50
2 2
Biased exponent in the range: [0 , 99 ]
Cmin =0
C..x. =99

max

since T = 50 it results that:

C=E+50
Cmin = Emin +50 > Emin = Cmin -50=-50
Cmax = Emax +50—> Emax = Cmax -50=49

Thus, the actual range of exponent is
E e[-50,+49]
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C 1)

L (2.18)

> (2.19)

+ Example 2: \
r=2
k=4
24
T=—=8
2
Biased exponent in the range: [0, 15 ]
C,in = 0000 — 0

2.20
Co = 1111515 > (2.20)

since T = 8 it results that:

C=E+8

Cmir\ = Emin+ 8 — Emin = Cmin_ 8= 0-8=-8
Chax = Emax T 8 @ Enax=Crax— 8=15-8=7

Thus, the actual range of exponent is
Eecl[-8,+7] j

83.3. Representation ranges for binary FLP numbers

e Standard FLP format

aq mg | a ...a [m...m,

> (3.1)

signbit  signbit exponent mantissa
of of |E| |m|
exponent mantissa

e Normalized FLP numbers case:
1
3 <|m|<1 (3.2)

m

=2 (3.3)

min,

2-18



M, =1-2"
Elin, =
E o, = 2% 1
E e, =+2 =1
Epn =—(2“-1)
Hence,
Nr;inn = 2Emmn My, = 2_(2k_1)'2_1
Ny = =2 m, =2 0o
Nr;inn = _2men 'mmaxn = _22k_1 '(1 - 2_n)

Un-normalized FLP numbers case:

It is considered the limit case for mantissa, where:

|m min = 2_n
The other conditions remain unchanged:
|m makx, = 1 - 27”
Emaxn = +(2k - 1)
Eminn = _(2k _1)
Then:
> Ng, =+ P
> r;lax = _27(2k71> 27”
> Np, =207 a2
> N, =2 a-2m)
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(3.14)

(3.15)
(3.16)
(3.17)
(3.18)

Observations:
By comparing the above values the following obvious
relations are observed:

+ +
NminLI < Nminn
Nl;axu > Nr;mlxn , OF ‘Nl;axu < ‘Nr;laxn
+ _ +
N max, N max,
N r;ﬁnu =N r;linn
FLP overflow (OVF):

Any attempt to represent a number that is greater then
the greatest representable number is called overflow
General conditions:

IN|> 22 (1-2")

> Positive overflow (OVF ™)
N>2”"(1-27")

> Negative overflow (OVF ™)
N <—2""(1-27")

FLP underflow (UNF)

Any attempt to represent a number that is smaller then
the smallest representable number is called underflow
General conditions:

normalized: |N| < 27(2k71) 2
un-normalized: |N| < 27(2&1> 2"

> Positive underflow ( UNF ™)
Conditions:
N <4271

normalized:

2-20

(3.19)
(3.20)
(3.21)
(3.22)



un-normalized: N < 4—2_(2k_1)-2_n

» Negative underflow ( UNF ")
Conditions:
normalized: N > —2_(2k_1>-2_1

un-normalized: N > —2_(2k_1)~2_n

Zero representation:
a) Un-normalized 0
. 0+ - Nr-:lin
b) Normalized
0" —>N,_..

FLP distance: 3\
Assuming that mantissa is on n bits, there are
represented two consecutive numbers Njand N,,

for the exponent e:

N, =2°-m
N, =2°-(m+27")
Then, the distance is given by the difference:
dep =N, =N, =2°(M+27")—=2°-m = 2"
J

representation, because it depends on the current value

(3.29)

(3.30)
(3.31)

(3.32)

y (333

Thus, the distance is not constant as in case of FXP }
(3.34)

of e. The greater is e, the greater is d and vice-versa.
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Representation of ranges for FLP numbers on real axis:

a) Normalized numbers \

1

A + ©
OVF *
N* =2¥ (-2

max p

LT

(=]

|ENEEEEEN

d

| UNF (3.34)
UNF -
N, =-21.27 20,
N, =2 (1-27)
OVF ~ /
¥y — oo
222



b) Un-normalized numbers

A +©
OVF*
N =2 (1-27)

maxy

[T

d=2""

?

+ —{2*1) A-n +
N;, =222 =
UNF'
UNF

N- =Pl o

max, u

IEEEEEER

0

CLTITTTITTITTTT

Nn:inU = _22k_1 ,(1_2‘”)
OVF~

V¥V —0

83.4. Total number of expressible numbers

e Standard FLP format
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(3.35)

aq mg | a ...a [m...m,

4.1)

signbit  signbit exponent mantissa
of of
exponent mantissa
e Number of different exponents:
k binary digits, hence

E|elo,(2* —1)] —> 2* values (4.2)
E' e [O,(Zk —1)] —> 2% values
E™ e [— (2k —l),O]—P 2% values

Total:
2x2%—1 (twicely taken 0) (4.3)
e Number of different mantissas:
O n binary digits
0 for the case of normalized FLP numbers m o (44)
-1 {1 _~-n n-1
|m|e [2 ,(1 2 )]—>2 values B
. 3
mantissa | m; | my | ......... m,
I 1[0 | e 0o [—2" > (4.5)
—» (1_~H-n
1M ' AR R 1 (1-2) )
0 ranges for positive and negative mantissas:
m" e [2_1,1 —2_”]—> 2" values (4.6)
m- e [— (1 -2 )—2_1 ]—VZn_l values
Total:
2x 2" =2" 4.7)

e Conclusion: total number of expressible FLP numbers i?

N = (24" —1)x 2" (4.8)
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83.5. FLP representation and Real Number System

e The FLP numbers can be used to model the real
number system of mathematics, although there are
important differences

e The finite nature of the number representation,
which is unavoidable

e [fanumber cannot be expressed in the number
representation set being used then it will be used the
nearest node that can be expressed; this operation is
known as ROUNDING operation
Highlighting the regions:

A +©
| OVF*

HR

d=2°"

|ENEEEEEN

I +
UNF
v

VI

<
T|I||||I|I|||T%c'>
1

VII | OVF - 2-25

¥y — 0

d

J

(5.1)

(5.2)

e The following differences are mentioned:
1) Expressible numbers appear only in regions II, (5.3)
IV, VI of real axis

2) Distance between two consecutive nodes
dpp =277
Thereby d is not constant throughout regions II 5.4
and VI
Real Numbers are forming Continuum, that is %

X+y

2
3) Even in regions ILIV,VI there exists a finite
number of nodes, thereby the DENSITY is finite

X,y—» Z = (5.5)

(5.6)

e Control over regions II and VI is given by the following
rules:

1) By increasing the number of bits at exponent it
results the extension of regions II and VI and,
consequently, the range of representation is enlarged

2) By increasing the number of bits at mantissa it result
an increase of the number of nodes in regions II and
VI, improving the accuracy of representation.

(5.7)

H_}

(5.8)

—=

e Conclusion:to comply to the needed accuracy it
will be adopted one of different formats of FLP
representation: Simple, Double, Extended Precision
(SP,DP,EP).

(5.9)

H_J

83.6. Example of FLP representation

e Given the decimal integer N,, =433

Assumed FLP format: 1+7+16 6.1)
Biased exponent
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C=E+64

Solution:
Conversion into radix 2 representation

433,, =110110001,

1) Normalized representation

Fractional notation of N:

110110001 =0.110110001x 2’

Biased exponent

E=9"">C=9+64=73"">1001001

Required representation:

0 1001001.1101100010000000

—

— - ;
sign  Biased mantissa
exponent
Verification:

N=(2" 42742744275 427 )x 2™ =
(242742t 27 270 )20 =

=28 427 +2° 42 42 =
=256+128+32+16+1=

= 433

2) Un-normalized representation
Fractional notation of N:

110110001 = 0.0000 0001 1011 0001 x 2"

Biased exponent

E=16 &> C=64+16=80 —1010000

Required representation:

2-27

(6.2)

(6.3)

(6.4)

(6.5)

0 1010000 . 0000 00011011 0001
[

sign Biased mantissa
exponent

Verification:

N = (2’8 +27 427 427" +2’16)>< AR
=220 2 2 427 )x2" =

=28 427 +2° 42 42 =
=256+128+32+16+1=

=433

8 3.7. Power of 2 radix FLP representations

Necessity of zones Il and VI extension
Simple mathematical connection between radix 2 and

radices power of two (4,8,16) representations.

General notations:
N = R® xm,
R=2"

N = (2k )e X Mg
Particular notations:
1) For k=2

R=2>=4

N =4°xm,

if normalized:

1
Z§|m4|<1

2) For k=3
R=2"=8
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(6.6)

(7.1)

(7.2)

(7.3)



N =8°xm,
if normalized: (7.4)
Ssimf<1

3) Fork=4 3\
R=2%"=16
N =16°xm,
if normalized: ; (7.5)

1
Eﬁ|m16|<1

General rules:

1) mg is written with 0 and 1, but interpreted in radix R_  (7.6)
2) thus mye is written with 0 and 1, but interpreted in
radix 16; a group of four consecutive bits associated ( (7.7)
to a hexadigit
3) Exponent € is a binary integer, but
2% <<< 161
Hence, the range of expressible numbers is
significantly extended.

(7.8)

Advantages:

1) apowerful mechanism of extension the }

ranges of representation

2) reduction of the probability of generation
un-normalized representations

3) reduction of normalizing procedure duration

(7.9)

Example:

Radix R=16
Format(1,1,k,n)

(7.10)

2-29

\
a, | mg |a ... a | m.... m,
S _ _ > (7.10)
sign sign exponent  mantissa
bit bit interpreted
of of inR=16
exponent mantissa
where (a;,Mg,a;,M;) € {O,l} J\
n{'m—> m,m,m,m, m,m,m,m,...m.,m_,m,m, [ (7.11)
h. h., h,
4
Then m,, —» h h,...h )
"
Normalization condition:  h.;#0 corresponds to the )
following cases:
0001
0010 > (7.12)
...... 15 cases
1111 J
83.8. Example of FLP representation in radix 16
e Given the decimal integer:
N,, =432
It is required FLP representation in radix 16
R=16=2*
assumed FLP format: 1+7 +16 8.1
Biased exponent
C=E+064
e Solutions:
1) Conversion of Ny into radix 2 and radix 16:
432,, =110110000, =1B0 } (8.2)
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2) Fractional representations for normalized FLP
representation:

110110000 = 0. 0001 1011 0000 0000x 2" = 8.3)
=0. 0001 1011 0000 0000x16 '

3) Exponent:
E=3, C=64+3=67—>1000011 } (8.4)

4) FLP representation
0 1000011 0001 1011 0000 0000| (8.5)
—— —— ——

sian H h_ h_ h_ h_
g biased 1 2 3 4
bit exponent 16-1 16-2 16-3 16-4

5) Verification:

Ny, =167 (1x16™ +Bx16> +0x167 + )
+0x167)=
~16°(16™" +11x1672 )= (49
=16" +16x11=256+176 = 432 )

6) Fractional representation for un-normalized FLP
representation:

110110000 =0. 0000 0000 0001 1011x2* = &7
=0. 0000 0000 00011011x16

7) Exponent:
E=5 C=64+5=69—>1000101 } (8.8)

8) FLP representation
0 1000101 0000 0000 0001 1011{ (8.9)
—— —— ——

sign Py h_ h_ h h
g biased 1 2 3 4
bit exponent 16-1 1672 1673 1674
2-31

9) Verification:
N =16"(0x16" +0x16> +1x16 +

+Bx16™)=
=16°(167 +11x167 )=
=167 +11x16' =256 +176 = 432

(8.10)

83.9. Comparative analysis of representation errors

e Maximum absolute error:
1) Definition

A :dlstance

max
2

2) FXP case:
-n

FXP -n-1
AN =—=2
max
2

3) FLP case:

28—r‘|

AFLP — — 2e—n—1

max

e Relative error:

1) Definition

A

0= —'“:'X 94
2) FXP case:

27!’171

A

o = 9.5)

A R B
Amin 2
SPP _ 2! _ 2 ~2"

min Am 1 _ 2—n

ax

(9.6)

(9.7)
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3) Conclusion: a strong dependency on the value of the
number, thereby the relative error in FXP case is not> (9.8)
constant over the range of representation.

4) FLP case:

FLP e—n-1 -n-1
Aph 2 2

A 2°.m m

—n-1 27[]71
Srin n = == —~2" (9.10)
m,. 1=-27"

SFP —

4) Conclusion: the relative error in normalized FLP

case is constant over the entire range of (9.12)
representation.
e Graphical representation: \
o
A
2—1
FLP
s
27" -2 A j

e Comments on ¢ (how to improve the FXP relative
errors in case of small numbers — scaling factors). (9.14)
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83.10. Examples of FLP representations in different computer
families.

3.10.1. Felix C family

e Only normalized FLP numbers (% <Imil<l)
(1.1)

e Simple precision and Double precision
e Binary and hexa interpretations

e Simple precision (SP) requires 4 Bytes (32 bits):

SP: )

Byte 1 Byte 2 Byte 3 Byte 4

v

A

32 bits
SP FLP format:

—»’ 1 |<— 7 e 24 — » >(1'2)

s | C m

where: S= sign bit
C= biased exponent
m= mantissa satisfying the condition:

%£|m|<1 j
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Double precision (DP) requires 8 Bytes (64 bits):
DP:

Bytel Byte8
.t [ r [ [ |
64
DP format:
—| 1 ’4— [P 56 >
S | C | m

where: S= sign bit
C= biased exponent
m= mantissa satisfying the condition:

l£|m|<1
2

For both cases the biased exponent C on 7 bits is
represented in excess 64:

C=E+64
Ranges for C and E:

C €[0,127]

E=C-64

E,, =C,., —64=0-64=-64

E o =Coa —64=127-64=+63
Thus, E €[-64,63]
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>(1.3)

}(1.4)

>(1.5)

e Ranges for mantissa: 3\

e For SP: mantissa represented on 24 bits, where
m_; is obligatory 1

2-1 2-2 2-24
LIX] X))
24

&
)l

o (1.6)
us,

Imfp,=2"
Imfs =1-27 /

e For DP: mantissa represented on 56 bits, where )
m_, is obligatory 1

2-1 2-2 2-56
1 [x] B

> (L7)

Thus, 56
| m |DP _ -l

min

|m|DP_1_2756 j

max

e The ranges of representable numbers:
e SP:
N' e =2"(1-27")=2%
Nr;inSP =227 =2
N - _ _2764 . 271 — _2765

maxSP T

Npsp =27 (1-27) = 2%

S (1.8)
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DP:

N;aXDP = 263 (1 _2756) = 263
N;in DP — 2.7 =2

N axop = 2727 =27
Nonpp =27 (1-27) = -2%
Example:

N,, =433

433, =110110001,

Fractional notation of N

110110001 =0.110110001x2°

Biased exponent

E=9-5C=9+64=73—->1001001

In SP representation mantissa consists of 24

bits

Required FLP representation:

0 1001001 110110001000000000000000
\_Y_}\ v N— —— _/
sign Biased mantissa

exponent
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r (1.9)

>(1.10)

J

Representation on the real axis:

+ 00
A
SP:
} OVF;
: NrJrrlaXSP :263(1_2724)5 263
Positive . dg = 27
representable [
numbers ||
HIN N* =96 .91 _ 765
1 minSP ’ =+2
UNF, <
® 0 (1.11)
p
UNF, <
N - _ A64 Al ~=65
|| 4 NmaxSP __2 2 __2
Negative [
representable
numbers ||
= Npsp =27 (1-27) = 2%
} OVF,,
Y
—
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+ o0
A
DP:
} OVF,,
f: NerrlaxDP :263(1_2756)5 263
Positive d op = 287%
representable —
numbers ]
(] Noinop = 227 =427
UNF;, <
r 1.12
® (1.12)
UNF,, <
N - 64 ~-1 —65
| | NmaXDP :_2 2 =_2
Negative ]
representable 1B
numbers N
- Npipop =27 (1-270) = -2
} OVF;,
\
— o0
2-39

e Conclusion: the ranges are quite identical, but the
number of representable numbers is much greater

in DP case (dgp <dgp)

e General representation in base 16:
N=16°-m=(2*)°-m

For normalised case:

isymy<1
16

e Mantissa is interpreted in base 16, as follows:

e For SP:

2t 2% 23 0% 22 o

h.] h.z h_3 h_4 h-S h-6

16" 167 167 16 167 16
» The extreme values are:
'm |minSP: 167!

=1-16"°

maxSP

[m]

For DP:

16" 167 167
» The extreme values are:

[ M inop= 16™

Im| ..op=1 167"
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(1.14)

\ (1.15)

> (1.16)

\ (1.17)

J

} (1.18)



e Biased exponent remains the same:
E €[-64,+63]

e Ranges of representation:

SP:

DP:

N »=16"(1-16°)=16""
N! »=167-16"=16"

axsp =—167°0:167 =—167
N . o =—16%1-16")=-16%
N op=161-16")=16""
N: op=16-16"=16
N- op=—1616"=-16"
N- op=-16%1-16"")=-16"
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} (1.19)

> (1.20)

> (1.21)

Representation on the real axis:

Positive
representable
numbers

UNF.,

UNF,

Negative
representable
numbers

+ 00
A
OVF,
M N' o =16"1-16"°)=16%
JF dep =16°°
> N o =16%16"=+16"
<
r 1.22
® (1.22)
<
\ - —64 -1 -65
— Npge =16 16" =16
<
L N =-16%1-16°) =16
} OVF;,
A
o0
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+
A
e DP:
} OVF,,
] Nt p=16"(1-16")=16"
Positive { dpp = 165
representable ]
numbers |
=
A N o =16 167" =+16%
UNF,, <
® 0 (1.23)
)
UNFg, <
; op =—16%1671 =—16
|| maxDP -
Negative { |
representable —
numbers |
L N =—16%(1-16T) = —16%
} OVF,,
N
o0
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Conclusions:

1) the number of expressible numbers is
identical with that corresponding to
interpretation in base 2, but the
ranges were expanded, having in view that :

16° >>2°

2) the accuracy is diminished since the distance } (1.25)
between nodes is greater :

SP: de,, =2

(1.24)

(1.26)
dep s = 16°° =277 >> dep

DP:  dyp, =27

(1.27)
dDP 6 — 168—14 — 246—56 >> dDP ,
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3.10.2. PDP-11 Family e Double precision ( DP ) representation on 8 Bytes

(64 bits):
e Only normalized FLP numbers (% < |m| <1) DP:
e Simple precision and Double precision representations 2.1) | Byte|1 | | | | | ]|3yt68 | )
e Only binary interpretation I: > |
64
e Simple precision ( SP ) representation on 4 Bytes \ DP format:
(32 bits): . Q 5 > 2.3)
SP 4 21 2 29 5-10 2.;4
Byte 1 Byte 2 Byte 3 Byte 4 g I
| | | | Y\ v ) — —— v
< > sign  biased mantissa
32 bit exponent
(2.2) J
SP format: e For both cases the biased exponent C on 8 bits is )
represented in excess 128 : 2.4)
C=E+128 j
_" 1 |<_ 8 "ﬁ 23 =i e RangesforCandE: N
7l 92 79 10 732 C €[0,255]
B | | | E=C-128 023
S " ~— ~ ) E. =C,, —128=0-128=-128

sign  biased antissa Epwe = Cpe —128 = 255128 = +127
bit  exponent

Thus, E € [-128,127] J
e Ranges for mantissa :

e For SP case mantissa is represented on 23 bits: A
510 732
] mantissa sp | > (2.6)
23
J
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But, because only normalized mantissas are allowed, the first

bit, m_y, is always 1, so that it could be skipped, being assumed, (2.7)

Then, with 23 bits there are represented mantissas on 24 bits.

2l 9293 924 3
efm oo 1]0J0]. 0
- 73 g >(2.8)
assumed A
— i
——
J
| m |i1F1’n - 2_1
7l 92 53 24 A
efm o> LU 1
- - > \(2.9)
assumed ‘
— -
——
J
M f=1-27
e For DP case mantissa is represented on 55 bits)
510 764

| | mantissa pp | |

»
»

55

e Similarly, the most significant bit is always 1,so that A

it is not represented anymore, being assumed.
Therefore, with 55 bits there are represented
mantissas on 56 bits.
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7 (2.10)

J

g (2.11)

2—1 2-2 2-3 2-56
em o 1]0J0]. [0
B 55 ’ >(2.12)
assumed
— —— __
J
[mpn=2"
5l g2 53 756 A
3 I T T 1
- o Y >213)
assumed
— —— _
J
|m|DP —1_2"%

max

The ranges of representable numbers :

— 2127 (1_2—24) ~ 2127 ~ 1038 h

SP: Nr-:lax SP
N* _ 9128 5ol _ 5120
min SP T =
[\ _ 97128 gl _ 512 > (2.14)
max SP T =
N oo sp = -2 (1- 2724) =~ 2% = —1038J
3
DP: N;ax op = 2127 (1_2—56) ~ 0127
N + _ 27128 . 271 _ 27129
min DP — =
N, — 7128 ol _ 5129 > (2.15)
max DP — =
Nl;in DP — _2127 (1 - 2756) ~ _2127 )
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Representation on the real axis :

e SP:

Positive
representable
numbers

UNF.,

UNF,,

Negative
representable
numbers

»

OVF;,

N + — 2127 (1 _ 2724) ~ 2127

[[[Y——"8

max SP

‘\.f

0 (2.16)

- _ 4128 A-l _ 129
NmaXSP =-2 27 =-2

N - _ _2127 (1 _ 2—24) ~ _2127

&

SJ S——

minSP

OVF,,
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DP:

Positive
representable
numbers

UNF,

UNF,,

Negative
representable
numbers

L+
8

O
<
T
g+

[[[Y—""

NrJrrlaX DP ~ 2127 (1 - 2756)

d op = 29—56

~N

+ _ A-128 A=l | ~A-129
NminDP =2 27 =42

(2.17)

A
[TTTTTTI

- _ 128 A=l A-129
NmaxDP =-2 27 =2

] ‘H(_/

Nmin DP

— _2127 (1 _ 2—56)

OVF,,
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83.11. IEEE Floating Point Standard 754 - 85

3.11.1 Short History

e Until about 1980 each computer manufacturer had its \
own FLP format .Some of them did arithmetic operations
incorrectly and there was no data portability.

¢ [EEE set up a committee to standardize FLP arithmetic.

e Two main advantages by standardization:
a) data can be exchanged between different computers
b) hardware designers have a unique set of specifications

when designing CPUs

e In 1985 it was adopted IEEE standard 754 for FLP
representations.

e All big companies producing microprocessors complied
to this standard ( Intel , Motorola , MIPS , SPARC etc )

e The standard encompasses the advanced experience of
many well-known CPU/micro manufacturers.

¢ The standard was developed to facilitate the portability j
of programs from one processor to another processor.

3.11.2 Basic FLP Formats

e Three FLP formats :
1) Single Precision ( SP ) on 32 bits.
2) Double Precision ( DP ) on 64 bits.
3) Extended Precision ( EP ) on 80 bits.

e Extended precision is used primarily inside FLP ALUs. Y
Its role is to reduce errors in case of the rounding
operations. Also, EP lessens the chance of an intermediate
overflow to abort computations. This format is not
available to the users. EP includes additional bits both at
exponent and mantissa fields. EP used strictly for
intermediate calculations, because this format lessens the
chance of a final result to be contaminated by excessive
round off error.

Since EP is of interest only for designers of CPUs, in what
follows, it will not be discussed.

> (11.1.1)

The focus of presentation will be the Single Precision (SP)
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and Double Precision (DP) formats.
e Single precision format :

0

1

8 9 31)

S

Biased Exponent

Mantissa

1

»

8 23

> (11.2.3)

>
Bl

A

32

SP format is on 32 bits with an 8 bit segment for the biased
exponent.

e Double precision format :

0 1 1112 63
S | Biased Exponent Mantissa |
1 52
>l 11 < > (11.2.4)
64
(11.2.1) h )
DP format is on 64 bits with an 11 bit segment for the biased
exponent.
e S =sign bit of the represented number
S=0 for N>0
(11.22) S=1 for N<0 (11.2.5)

e Biased exponents are different for SP and DP :

1) In SP exponent uses excess 127 representation

} (11.2.6)
Ce = Eg +127

2) In DP exponent uses excess 1023 representation | (11.2.7)
Cpop = Epp +1023
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Range of exponents :
1)InSP:

Cep =Egp +127 5 E, =Cg, —127
Cq €[0,255], the range for 8 bit numbers _

> (11.2.8)

The extreme values for Cgp, :
Csp s — 00000000 — 0

(11.2.9)
Ceppay — 11111111 > 255 e
The extreme values for ESP <
Evmin =Cspin —127=0-127=-127
\(11.2.10)
Espmax =Cospmax —127=255-127=+128

Thus, Egp €[-127,+128]

2)InDP:
C.p=Eg, +1023 > E,, =Coo —1023  H11.2.11)

Cop €[0,2047], the range of 11 bit numbers
The extreme values for C, :

Copmin —> 00000000000 — 0

Copmax — 11111111111 — 2047

The extreme values for Eg, :

11.2.12)

Eopmin = Copmin —1023=0-1023 =-1023
Eopmax = Copmax —1023=2047-1023 = (11.2.13)
=+1024
Thus, Epp € [-1023,+1024]
Mantissa is always interpreted in base 2 ( never 11.2.14)
a power of 2 base) o
One of the traditional problems with FLP numbers
is how to deal with UNF,OVF or uninitialized
numbers. IEEE 754 standard deals with these 11.2.15)
problems explicitly by adding to the traditional
normalized numbers other four numerical types
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e Therefore the following numerical types were designed)
a) Normalized numbers
b) Denormalized numbers

c) Zero
d) Infinity
e) Not a Number ( NaN )
J
3.11.3 Normalized Numbers
e The extreme values of the biased exponent are not \

allowed for normalized numbers, being assigned to other
FLP representations.
e Therefore, the allowed biased exponent values, designated

N .
C", are in the ranges:

00000001| C&,
> Cg €(0,255) :

s,

00000000001| Cpp
> Ch, €(0,2047) :

L1111111110] Cpp )
$

e According to definition, a normalized number fraction
begins with a binary point, followed by a 1, and the
rest of the fraction.

> (11.2.16)

>(11.3.1)

e As in case of PDP-11 computers, the leading 1 in the > (11.3.2)

fraction does not have to be stored, its presence is
assumed
e Standard IEEE 754 uses the principle of an implicit1.
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N

e Significand is a concept used instead of the words fraction
or mantissa; it is designated S and it is composed of:

a)the implied leading 1, but placed in the integer position 2°.>(1 1.3.3)

b)the binary point
¢)23 (SP) or 52 (DP) arbitrary bits representing the
mantissa (fraction)

}J(11.3.4)
}(11.3.5)

e Conclusion: all normalized numbers have a significand S
in the range 11.3.6)

1<S<2

e Detailed calculation of the range of significands

1) for SP:
|Sinsp| =1.00.......0 1 Farsg
23
S | =111 151+(1-277)=2-27 1(11.3.8)
Bl et o 140-2%)-2-27)
Hence, 1<[Sq[<2-27 JRUEK)
1<]Sg] <2 Ji13.10)
2) for DP:
S ine| =1:00......0 = 1 JXRERED
52
[Suweop| =1Ll > 1+ (1=27) =222 K113.12)
52
Hence, 1<Sp,[<2-27 Ja13.13)
1S <2 JRCRIERE)
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e Ranges of normalized number representations:

1) for SP:

C& €(0,255), or 0<CY, <255, or 1<Cy, <254
ES €(-127,+128), or -127<E¢, <128, or
-126<EL <+127

|Smm SP| =1

|S x| =2-27

Then,

Nn;;xsp — 2+127X(2_2—23) ~ 2128
N _ 12651 =p-126

N~ . = 12y =126

maxSP

Nn;nsp — _2+127 (2_2—23) ~ _2128

e Representation on the real axis:

+

A

e}
A

+ ~ 128
1 Nmax sp 2
— + -126

NmmsP 2

- —-126
N maxgp -2
] -~ 28
v mingg —
o0
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(11 3.15)

} (11.3.16)
} (11.3.17)

(11.3.18)

>(11.3.19)




2) for DP:

Cop €(0,2047), or 0 < C, <2047, or
L<CN <2046 (11.3.20)
<Cpp <
Edp €(-1023,+1024), or -1023 < Ep < 1024,0r (11.321)
1022 <EY, <1023 o
Smin = 1
Sl B } (11.3.22)
1S maxop| =22
Then,
N + 21023X(2_2—52) ~ 2+1024
max DP -
-1022 _ -1022
N op=2"""x1=2 113.23
N - = 1022><1 21022 ( 3.23)
max DP
NmmDP _21023><(2 2 52) ~ 2 1024
e Representation on the real axis:
+
A \
N + ~ 2+1024
max DP
] + -1022
N oninpp =2 o >(11.3.24)
N~ =-2
max DP
| - ~ _ 1024
v N npp =2 )
— 00
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3.11.4. Examples of normalized number representations.

e Example Nr.1: \

It is given a decimal fraction N1p=+0.5 and it is required its
FLP representation.

N, =+0.1
N, =(1.0)x2" > E=-1

C=E+127=-1+127=126
C=01111110

23

N >0 — Sign=0

SP FLP representation: 23 bits
A

~ ~N
O 1 8 9 31
0111111 000 0000............ 0000

T

Thus, N, =+0.5 — 3F000000h ]

2-58

(11.4.1)



e Example Nr.2:

It is given the decimal integer N;o=+1 and it is required its

FLP representation.

N, =1

N, =(1.0)x2° 5 E=0
C = E+127=0+127=127
C=01111111

23

N >0—Sign=0

SP FLP representation: 23 bits
A

~ ~N
01 819 31
0]0I11111 1 ]000 0000............ 0000

3 F 8 0 0

Thus, N =+1— 3F800000h
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\

(11.4.2)

e Example Nr.3:

It is given the decimal number N;o=1.5 and it is required its \

FLP representation.

N, =1.1
N, =(1.1)x2° 5 E=0
C = E+127=0+127=127

C=01111111
S =1.1000........... 0
%/—J

23
N >0—Sign=0

SP FLP representation:
23 bits
N
~ ~
0]1 819 31
0]0111111 1 |100 0000............ 0000

B I

Thus, N,y =+1.5—> 3FC00000h

3.11.5. Denormalized numbers

e In general case of FLP representations there were defined

the extreme regions OVF 4 ,UN F% )
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e Denormalized numbers were introduced to solve the case ) e Ranges of denormalized numbers: N
. D -127 23\ o 9127
of UNF% , that is when the result of a calculation has a DforSP: Ny =427 x(1-277)=2
magnitude smaller then the smallest normalized FLP ND = 49127 923 _ 5-150
number that can be represented: r(11.5.2) Miflsp- >(11.5.8)
UNF* :N < Ny, N<N? N, =—277 %27 =27
. min SP ° min DP SP—
D 127 23\~ 127
UNF :N>N, o, N>N_ J Niing, =—2" x(1-2"7)=-2 J
e Previously, such cases were solved either by taking the 1153 5 ops o o )
result 0 and continuing calculations, or causing an FLP (11.5.3) 2)forDP: Ny, =+2 x(1-27")=2
underflow trap. ND = 491028, 952 _ 5-1075
e Since neither of these is satisfactory, IEEE Standard 754 MiMop, > (11.5.9)
. . D (11.5.4) ND = o028 552 _ 51075 -
invented denormalized numbers(N ) maxpp. — X ==
Nr?ir“gpf — _2—1023 x ( 1— 2—52 ) ~ _2—1023 )

¢ Rules of representation:

a) N D has the biased exponent 0, } . e Representation on the real axis:
5.5

\

D _ D _ D _ A
C” =0—Eg =-127, Egp =-1023 1) for SP: . » .
[ N, =277 x(1-277)
b) Significand is replaced by the traditional mantissay =
(fraction) of 23 or 52 bits, so that the implied Positive denormalized =
integer 1 vanishes. numbers =
= =1=-273 11.5.6 =
M| e =01, 1=1-2 > ( ) Bl e, s
3 5 27150
M| op = Ol 1=1-2" )
52 —x 9% 0 (11.5.10)
. -150
o The ranges of mantissas:
. 23 23 7 XL ND  __pis0
1) for SP: 2% <|m|g, <1-2 = o
228 ¢ |m| <1 Negative denormalized =
sP > (11.5.7) numbers =
2)forDP: 2% <m|, <12 =
.52 L\ D __n-127 A
2 S|m|DP <1 Nminsp, =-2 X(l 2 )

.
P
<
N—
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2) for DP:

Positive
denormalized
numbers

2—1075

2—1075

Negative
denormalize
d numbers

¢ Contact region between Normalized and Denormalized

numbers:

1) for SP:

Positive
normalized
numbers

Positive
denormalized
numbers

|
¢
o

P
<«

rEaXDm = 2_1023 X (1 - 2_52)
l\lrginm,+ =427

Nn?axDPf — _271075

rlr?inDFL =271 (1-27)

J

\

an
u N — 9126
N ND. =2 x(1-27)
T dsp — 2—150
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>(11.5.11)

>(11.5.12)

Distance,, =272 -2 x(1-27%) =
_ 9126 _ =127 | 5150 _

— 2-127(21 _1)+2_150 —

_ 9127 4 5-150

e Distance in denormalized region:

N1D — 27127 % msp

NZD — 2—127 ™ (mSP +2—23)

dp = N2 - NP =27 (mg, +272) 277 .m,,

_ 127 150 H-127 B
=27 Mg +277 =27 Mg, =

— 2—]50

2) for DP:

Positive
normalized >
numbers

Positive
denormalized

N N — 2—1022

minpp,

N D — 2—1023 > (1 _ 2,52)

maxpp,

_ n-1075
dg =2

numbers

Distance,, =27 =27 . (1-27) =

_ 91022 51022 | 51075 _

_ 2—1023

_ 2-1023

.(21 _1)+2—1075 _

+ 2—1075
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(11.5.14)

(11.5.15)
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¢ Distance in denormalized region:
D __ ~-1023
N =2 "Mpp

N2D — 2—1023 . (mDP + 2—52)

dpp = NzD - NID =
— 271023'(mDP + 2752) _ 271023 3 mDP —
_ o103 ‘M, + 91075 _ =1023 My, =
— 2—1075
3.11.6. Representation of Number 0
e There are defined two zeroes: 0" and 0.
e The configurations:
a) Positive zero:
—»| | f[«— 8§ —e— 23 —>
1) for SP 0100.......... 0100.......... 0
< 32 >
—»| | f— 11 —e— 57 —>
2) for DP 000.......... 0100.......... 0
< 64 >
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(11.5.17)

(11.6.1)

(11.6.2)

b) Negative zero:

1) for SP 1100

—»l 1 le— 8 —e— 23 —
.......... 0100..........0
< 32 >

—»| [ Il —x<— 52 —>
2) for DP 1100.......... 0(00.......... 0
< 64 >
e Rules of representation of = 0:
Cmin =0
m|=0
Sign=0—-0"
Sign=1->0
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3.11.7. Representation of infinity

e It was defined a positive overflow OVF" when

N>NN

max +
e It was defined a negative overflow OVF when
N<NN

min—

e In general, emergence of OVF' or OVF constitutes a

singularity, which is signalled by generating an error signall.

¢ In IEEE FLP standard 754-85 it was adopted a more
flexible solution:
» OVF' is defined as + o
» OVF is defined as — o

e On * oo there are defined valid operations:

5 + (+00) = +00 5 —(+00) = —o0

5—(—0) =+ 00 — (—00) = +00
5x(0)=00 —00 4 (—00) = —00

(+0)+(+0)=+0  5:(10)=0

e Rules for representation of + oo :
Biased Exponent - C, .,

Mantissa field — 0 (which is not allowed for
normalized numbers)

Sign =0 — +©

Sign=1 — -
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(11.7.1)

(11.7.3)

(11.7.4)

(11.7.5)

(11.7.2)

e The configurations:

1) SP:
—»| 1 l— 8 —e— 23 —>
+ 00 O 11.......... 1]00.......... 0
< 32 >
—»| 1 le— 8 —e— 23 —>
—® 1] 11.......... 1]00.......... 0
< 32 >
2) DP:
—»| 1 l— 11 —e— 352 —>
+ 00 0] 11.......... 1]00.......... 0
< 64 >
—> & 11l —ye— 52 —>
—© 1] 11.......... 1]00.......... 0
< 64 >
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3.11.8. Not a Number (NaN) representation.

e NaN represents situations when results of arithmetic
operations are not defined. (11.8.1)

e NaN is a symbolic entity encoded in FLP format of which

there are two types: 11.8.2)
a) signalling o
b) quiet
e The signalling NaN shows an invalid operation exception
whenever it appears as operand. (11.8.3)

operations without signaling an exception.

e The quiet NaN propagates through almost any arithmetic
(11.8.4)
e Table with quite NaN:

\

Operation Example
(+00) + (—0)
L , (—00) + (+0)
Addition/Subtraction (490) — (+0) (11.8.5)
(=0) = (=) >
Multiplication 0 x (£o0)
Division 0 oo
0w
Square Root Jx , wherex <0 )

e Thus, NaN can be used in FLP format as an operand
with predictable results. (11.8.6)

e Rules for representation of NaN in IEEE 754 standard:
Biased Exponent: Cx

Mantissa: any non zero bit pattern (11.8.7)
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¢ Configuration

| i| 11........ 1| Any non zero pattern |
<1 811 —k 235 L (11.8.8)

< 32/64 -

e Observation: the mantissa value can be used to distinguish
between a quiet NaN and a signaling NaN; (11.8.9)
also it can specify particular exception
conditions.

3.11.9. Recapitulation of all IEEE FLP standard 754-85
numerical types

1) Normalized numbers: \

| + | 0<EXP<Max | Any pattern |
2) Denormalized numbers:

t 0 Any nonzero
pattern

3) Zero:

EE 0 | 0 |>(11.9.1)
4) Infinity:

El Max | 0 |

5) Not a Number (NaN)

+ Max Any nonzero
pattern
] »¢—— /11 —>¢— 23/50 —P
32/64 /
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3.11.10 IEEE FLP standard 754-85 representation on real axis

A) Simple Precision (SP):

1) Positive numbers: _>| 1 I(_ ] _)|(_ 23 _)|

+© 0 11......... 1]00.......... 0|

b le—— 2 —————
3 N +127 -23 +128 +38
T—N =27".(2-2 =27 ~10
= > 13 —>|<(— 23 —)>|
Positive E <0 [ 11......... 10| 11.......... 1_:|
normalized > = 32 i
numbers =
) E N N' — 2—126 .1 ~ 2—126 ~ 10—38
_» |1 1mn -+ 8 23_»
[0]o00...... 01 | 00...... 0
[P
|‘ 32 'I
D -127 23\ ~ A-127
\ E N, =277 -(1-27)=2
= 1 |e— 35— ple— 23 —p)
Positive = |o]o0....... 0 1., 1]
denormalized > H I< >|'
numbers = 32
) B
— N D _ 2—127 . =23 — 2—150 ~ 10—45
T le— 3 —i—m —»)
[o0]o00........ 00 | 00......01 |
IA LI
[~ 32 d
>l 5§ —ple—23 ]
+00—> [0]00........ 00 | 00......00 |
IA LI
[~ 32 g
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2) Negative numbers: —>| 1 |<— 8§ —»|<423 —>|
—09—>»[1]00...... 00 | 00......00 |
\ _ _ _ -
= Eax? =2 127 '2 23)=_2 150 ;_10 45
s> 1le— 3—ple—23 —»
Negative = [ 1[00........ 00 [ 00.......... 01
denormalized > = |< » >
numbers H
) B ND = 177 A(1- 2723) ~ 9177
> Td—5 —>le—2
[1]00...... 0 1l.......... 1|
IA LI
|« > >
N —126 1 ~ 126 -38
g Nmax— :_2 1:_2 :_10
= > 1 je—8 —le—23 —
Negative = [ 1]00......... 1]00.......... 0 |
normalized = ||< >
numbers = 32

N N' — _2127 . 2 _ 2723) ~ _2128 ~ _10+38

> le— 3§ —>le 23
[1]1n....... 10 ] 11......11 |
< |
I~ EY) gl

v—>|1|<— 8 <« 23
—oo [ 1| 1l......... 1]00.......... 0|
32
(11.10.2)
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B) Double Precision (DP):

1) Positive Numbers: e n < 2
+ .00 fol1r....... 1]00......... 0
—>.
3 N +1023 -52 1024 +308
N =2 -(2=2 =27 =10
>l e 17 e 52 —>|)
Positi Lo 11......... 10 | 1. 1|
ositive | N
normalized >» ! 64 !
numbers
J N -1022 -1023 -308
N =2 -1=2 =10
» Tl 11 —>|e52 —p]
[o]o0..... 01 ] 00......0 |
|l [
= 64 "
g N Dax+ — 271023 . (1 _ 2752 ~ 271023
= >l 11 —>le— 52
Positive £ |i 0]00.... 0] 11.......... 1 i|
denormalized = [« o q
numbers =
= N D. — -1023 X 2—52 — 2—1075 ~ 107324
»'fe— " 11 —Pfe— 52>
[o]o0....... 00 | 00......01
la
= 64
>l 11 P52
+0®> |0]o00..... 00 | 00......00
IA
= 64
(11.10.3)
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2) Negative numbers: -0 o—» l[_l [00......... 00]00...... 00
) 64
L ND o0 552 5-l075 __o-l07S
S e 1 52 —*
Negative =  [1]00...... 00]00.......... 01
denormalized P = e »
numbers = ! 64
) =l me- - ol (7o ol
i 11— 52
1]o00......... 01l 1
< ” »
= _\Tn’:" = _2—1022 1= _2—1022 = 10—305
= - le— 1] —le— 52—
) = 1]00......... 1]00.......... 0|
Negative = < N
normalized = 64 i
numbers =
E Vl,::rj:___)'.023_(2_2—51)_:__2—'024E
e 1) e 52—
11, 10[11......11 |
™ gl
64
v —»J] 11 —>«— 52 —+|
- (1] 1][00.......... 0|
: = -
(11.10.4)
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83.4 Representation of alphanumeric information

3.4.1 Introduction

e So far, only representation of numbers was }(4‘ 1.1)

considered

e The information manipulated in a digital computer is
wider than numerical values: alphabetic characters
(AB, ...,Z), arithmetic operation symbols (+,—,%,+ ),
punctuation symbols (, ;. ! ), mnemonics for different
commands ( DEL, ESC, ACK etc) a.s.o.

these characters forming the alphanumeric character
set of a digital computer, known also as the
ALPHABET of a digital computer.

e Anyhow these alphanumeric characters are binary
encoded inside a digital computer

e Such an alphabet must comprise binary codes on n
bits for representation of 10 decimal digits, 26 letters
of the usual alphabet ( upper case and lower case letters
the punctuation symbols, arithmetic operation symbols,
special character symbols , etc.

o If different systems of coding are used then it must be
provided a complex coding/decoding process when
two digital computers must communicate.

e Thus, an extended code is required to encompass all }
(4.1.3)

100 characters.
e The key problem is how to standardize representation

e Typically, such an alphanumeric set would contain ove?r
(4.1.7)

3.4.2. Conditions for the Alphanumeric Character Code

1. The length of the code must ensure representation of
the entire set of characters, symbols, commands.

e  With n bits there are encoded 2" characters;
vice versa, if considering N characters, then
the binary encoding would require n>[log,N]
bits.
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e In the beginning era, for such purposes, it was
used Baudot code containing only 5 bits, which

is completely insufficient nowadays (2° =32 »(4.2.2)
characters); this code was specific for older
typewriters, allowing printing only uppercase
letters.

e At present there were adopted 8 bit
alphanumeric codes, ensuring representation (4.2.3)
of up to 256 characters.

2. Convenient correlation to the dimension of the
Addressable Information Unit ( AIU).

e Dimension of AIU and memory organization. }(4.2.4)

e Ideally, an alphanumeric code would occupy a"
location in the main memory, therefore
dimension of the code would comply to the
dimension of AIU. )

e At present, an 8 bit combination represents a
byte, which is UIA or a division of UIA.
Therefore, a recommended length for the
alphanumeric code for most computers is 8.

e Ifshorter, then an inefficient mode of memory
utilization occurs, by wasting memory cells. }(4'2‘7)

3. Convenient correlation to the decimal numbers

> (4.2.5)

> (4.2.6)

representation.
e The BCD codes are usually on 4 bits (4.2.8)
e Ideally, it would be to select an 8 bit
alphanumeric code to encompass two BCD (4.2.9)

combinations.
e Hence, in a memory location with 8 bits there
can be placed an AIU, an alphanumeric } (4.2.10)
character or exactly two BCD combinations o
(two decimal digits).
4. Incorporating some numerical facilities — to ensure
realization of some specific alphanumeric operations }(4.2‘1 1)
through existing numeric operations.
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e The weighting principle of coding the A
alphanumeric characters, that is for a succession
of related characters there is used an ascending
set of binary combinations.

For instance, assuming n=8, for the succession
of alphabetic upper case letters, it is used the
following sequence of codes:

A — 01000001 — 41h
B — 01000010 — 42h
C — 01000011 — 43h J

e This condition is very useful for defining N
particular manipulations of alphanumeric
information, like, for instance, comparisons
between words for creating lists on
inventory, employees, payrolls, etc. J

e Final Conclusion: it resulted necessity for an 8 bit
length alphanumeric code incorporating weighting
principle.

(4.2.12)

> (4.2.13)

(4.2.14)

84.3. ASCII-8 and EBCDIC codes

4.3.1. ASCII alphanumeric code

ASCII ( American Standard Code for Information
Interchange ) -the most commonly used code in digital
computers

ASCII is a 7 bit code used in telecommunications, but it
was extended to 8 bits to be adapted for digital computers
alphanumeric information representation.

The ASCII code on 7 bits is given below:

}(4.3.1.1)

4.3.1.2)
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Most significant | 000 | 001 [o010 |011]100] 101 |110] 111
its bg.bs.b,
Least
significant
bits by.b,.b,. b,
0000 NUL |[DIE [SP |0 |[@ |P p
0001 SOH | DC1 |! 1 |A |Q |a |q
0010 sTX [Dc2 [« |2 [B [R |b |[r
0011 ETX |DC3 |[# |3 |c |s [e s
0100 EOT |DC4 |[$ |4 |D [T |d |t (4.3.13)
0101 ENQ [NAK|% |5 |E |U [e |u
0110 ACK|SYN |[& |6 |F |v [f |v
0111 BEL |ETB |[° 7 |6 |w |g |w
1000 BS |CAN]( 8 |H |[x |h |x
1001 HT |(EM |) 9 I Y i y
1010 LF _|SUB | * |1z i |z
1011 UT |ESC |+ K k {
1100 FI |FS L E
1101 CR |as |- = [™m m [}
1110 SO |RS N [T |n |~
1111 SI | US > o |l |o |DEL
This code allows coding of uppercase and lowercase
letters, decimal digits, punctuation symbols, mathematical (4.3.1.4)

symbols, control characters for peripheral devices etc.

To change to an 8 bit code it was appended the eighth bit
in the most significant position, b, . (4.3.1.5)
} (4.3.1.6)

4.3.1.7)

Usually this extra bit is a parity bit for error detection
mechanisms; sometimes it is adopted a “0”.
Alternatively, use of the 8" bit is defining an alternate
character set; with ASCII-7 there are coded 128
alphanumeric characters whereas with an extended ASCII
there can be encoded 256 alpha characters, by including
also new graphic characters.
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The weighting principle is respected: \

A — 01000001 a— 01100001
B — 01000010 b — 01100010
C — 01000011 c— 01100011
etc. etc. > (4.3.1.8)
0 — 00110000
1 — 00110001
2— 00110010
etc. )

Each ASCII combination is represented in a shorthand A
notation by two hexa digits (hs h;):
b,bb5b, byb,b,by,
h h
S |
For example:

A—>0100 0001 —>41h >(4.3.1.9)

B—> 0100 0010 — 42h
—_ =

C—> 0100 0011—43h
—_—— ——

etc. J

4.3.2. EBCDIC alphanumeric code.

EBCDIC (Extended Binary —Coded Decimal Interchange } (43.2.1)
Code)

EBCDIC was developed by IBM, used on IBM
mainframes (also in Romanian computers in family
FELIX C).

EBCDIC from the beginning was an 8 bit code allowing
representation of 256 alphanumeric characters. (4.3.2.3)
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The EBCDIC character code shown in hexadecimal is presented
below:

1D

NUL |20 DS |40 SP |60 — |80 AD Co{ |E0.
SOH |21 SOS |41 61/ |81a |Al~ |ClA |EI \
STX |22 Fs |42 62 |82b |A2s |C2B |E28
ETX |23 43 63 |[83c |A3t |c3C |E3T
PF 24 BYP |44 64 |84d |A4u |C4D |E4U
HT |25 LF |45 65 |85e |ASv |CSE |E5V
LC 26 ETB |46 66 |86f |A6w |C6F |E6W
DEL |27 ESC |47 67 |87¢ |A7x |C7G |ETX
28 48 68 |s8h |ASy |C8H |ESY
29 49 69 |89i |A9z |1 |E9Z
SMM |24 SM |4A ¢ |6A° |8A |AA CA EA
VI |2B Cc12 |4B 6B . |sB AB CB EB
FF 2C 4 6C % | 8C AC cc EC
CR |2D ENQ 4D ( |6D_ |sD |AD CD ED
SO |2E ACK [4E + |6E= |SE AE CE EE
SI OF BEL |4F 6F 7 |SF AF CF EF (4.3.2.4)
DLE |30 50 & |70 |90 BO D0} |FooO
DCl |31 51 71 |91 |BI DIT |Fl1
DC2 |32 SYN |32 77 |92k |B2 DK |F22
™ |33 53 73 |931 |B3 D3IL |F33
RES |34 PN |54 74 |94m |B4 D4 M |F44
NL |35 RS |35 75 |95 |BS DSN |F55
BS 36 UC |56 76 |9 o0 |B6 D60 |F66
IL 37 EOT |57 77 |97p |B7 DIP |F17
CAN |38 58 78 |98q |B8 DSR |F88
EM |39 59 79 |9r |BY D9 F9 9
cc A SA1 |7A: |9A |BA DA FA |
CUl |3B CU3 |5BS |7B# |9B BB DB FB
IFS |3C DG4 |5C¢ . |7c@ |ocC BC DC FC
1G$ 3D NAK |SD) |7D° |9D |BD DD D
RS |3E SE: |7E= |9E BE DE FE )
IUS |3F SUB |SF - |7F = |9F BF DF FF

Most of computers would accept alphanumerical data in

either code (ASCII or EBCDIC) and perform conversion (~(4.3.2.5)
to the native code.

The conversion to ASCII/EBCDIC and back is }( 43.2.6)
accomplished in I/O units. o
When a user types in a series of characters at a keyboard

by means of an encoding chip that exist inside the

keyboard interface, each character is translated into its (4.3.2.7)
ASCII or EBCDIC equivalent on 8 bits, followed by

transmission of the corresponding byte to CPU.
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The output that a CPU sends back to the display is also
an ASCII or EBCDIC code series (alpha information).
These codes are translated by peripheral unit interfaces
into an understandable information by the user.

(4.3.2.8)

84.4. Alphanumeric information

e Alphanumeric word — series of alphanumeric characters. (4.4.1)
e The main characteristic of alphanumeric information
representation is its variable length. } (4.4.2)
e There are upper limits specific for different compute
families (for example, 256 characters). (} (4.4.3)
e Example: “House 1” will be represented in ASCIT
as follows:

0010 0010 0100 1000 0100 1111 0101 0101 0101 Q011
2 2 4 8 4 F 5 5 53>(4-4-4)

" 1)

H U S
0100 0101 0010 0000 0011 0001 0010 0010
4 5 2 0 3 1 2 2

84.5. Unicode character set

The ASCII and EBCDIC codes support the historically

dominant (Latin) character sets in computers. But there

are many character sets in the world, therefore a new (4.5.1)
universal character standard was developed that supports

a great variety of the world’s character sets, called

Unicode.

This is a 16 bit coding system and represents an

evolving standard. It changes as new character sets are (4.5.2)
introduced into it and as existing characters sets evolve

and their representation are redefined.

Each Unicode binary code is represented by a pattern

of 4 hexadecimal digits. } (4.5.3)
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In the version 2.0 of the Unicode standard there are
38885 different coded characters covering the principal 4.54)
written languages of all continents.

The first 256 combinations of Unicode, shown in
hexadecimal are given in what follows:

0000 0020SP [0040@ | 0060 | O0080Cul |00AD | OOCOA |OCEOa \
NULL  |0021! |0041A |0061a |O0081Cwl |NBS | OQ0CIA |OCEl4
0001SOH | 0022 |0042B |0082b |00B2Cwl |00Al; |00C2A |OOE2i
0002STX |0023# |0043C |0083¢ |0083Cwl |O00A2¢ |00C3A |OQOE3:
0003ETX |0024S |0044D |0064d |00B4Cwl |00A3E |0OC4A | OOE4:
0004EOT |0025% |OO45E |0085e |0085Cwl |00A4= |00CSA |OOESH
000SENQ | 0026& |O0046F | 0066 | 0086CHl |ODAS¥ |00C6E |O0EGe
0006 ACK |0027° |0047G |0067g |00B7Cwl |00AG! |00CTG | OOET¢
0007BEL |0028( |O048H |0068h |0088Cwl |O00A7§ |OOCSE |OCESe
0008BS |0020) | 00401 |0069: |0089Cwl |00AS™ |OOCOE | OOEQ¢
0009HT |002A= |O004AT |006Aj |00BACHl |O0DAOE |(Q0CAE |OOEAE
000ALF |0028+ |O004BK |008Bk |0DSBCil |00AA® |0OCBE |OOEB&
000BVT |002C° |O004CL |006C1 |00BCCil |00AB« |00CCI |OOECH
000CFF | 002D- |004DM |006Dm | 00SDCtrl |O0DAC—- |00CDI |OOEDi
000DCR |O002E. |OO4EN |00GEn |ODSECwl |00AD- |00CEI | OOEE}
000ESO | OQ02F/ |O04FO |006Fo |ODSFCtl |ODAEE |O0OCFI | OOEFi
000FSI | 00300 |O00S0P |0070p |0000Cwl |O00AF ™ |00DOD |O00F0& (4.5.5)
0010DLE | 00311 |0051Q |0071q |0091Cwl |00BO® |0GDIN |OCFld
0011DCI {00322 |O00S2R |0072r |0092Cwl |O00Bl= |06D20 |O0F2%
0012DC2 | 00333 |00S3S |0073s |0003Cwl |00B2® |06D30 |O00F3 6
0013DC3 | 00344 |00S4T |0074t |0004Cwl |00B3® |00D4Q |O0F46
0014DC4 | 00355 |O00SSU |0075u |0095Cwl |O00B4~ |0ODSO | O0ESd
0015NAK | 00366 | 0056V |0076v |0096Cwl |00BSu |00D6O | O0FG&
0016SYN | 00377 |00STW | 0077w |0097Cil |O00B6T |00D7x | OOF7~
0017ETB | 00388 |O0038X |0078x |0098Cwl |00B7- |00DSO |O0ESo
0018CAN | 00309 |0050Y |0070y |0009Cwl |O00BS, |00D9U |OCE9®
0019EM | O003A: |O00SAZ |007Az |009ACHl |O00BO® |OQODAU |OCFA®
001ASUB | 003B; |O00SB[ |007B{ |ODGBCil |00BA°® |0GDBU |OOEBi
00IBESC |003C< |O00SC\ |007C| |009CCil |00BB» |06DCU |QOECi
00ICFS |003D= |005D] |007D} |009DCul |O00BC¥% |00DDY |OOFDp
001DGS |O03E > |O00SE* |007E~ |ODOECwl |00BDY% |OODEY |OCQFED
00IERS |O003F? |OOSF_ |O07F | OOOFCil |O00BE% |OUDE§ | OOEF§ }
001F US DEL 00BF ;

In defining the Unicode there was provided a one to

one correspondence between Unicode 16 bit pattern and
ASCII 8 bit patterns, namely between Unicode
combinations 0000h up to 007Fh and ASCII combinations
from 00h up to 7Fh.

The 16 bit Unicode standard is a subset of the 32 bit 1SO }(4 57)

(4.5.6)

10646 Universal Character Set (UCS-4).
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85. Decimal information representation

The modern digital computer can operate on decimal

information as well; such information must be coded 5.1
inside a digital computer through BCD codes.

It is assumed that the mathematical operations are

implemented with BCD arithmetic in decimal

arithmetical units .

The AIU is a Byte on 8 bits. }
Matching of BCD codes to the dimension of an AIU is

realized through two formats: compact and zoned. } (54
Compact format: two BCD codes encapsulated in a Byte)
as follows:

> (5.5)
| BYTE BYTE |
— JI\ _J |
| ~ ' ~ .
..... [ BCD | BCD | BCD | BCD | ./
e BCD used is the basic 8421 code. } (5.6)
e Example: 7254 — in two consecutive Bytes: 3
|
7 2 15 4
| 0111 [ 0010 ) 0101 | 0100 | S (5.7)
N DI Y
Y~ | Y
Byte Byte )
e The allowed length L, of the decimal number, )
depends on the computer family; for instance, it
could be 31 digits + sign:
| | I >(5.8)
[ dyo Ty [ dog (dor | oo, [do! ¥ |§r§up of
| I ! its to
B Y | B 't 5 Bvie 16 encode
yte yte te i
. M °2 the sign )
Y
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Zoned format assumes each Byte contains a group
of 4 bits called zone, followed by the BCD code:

Zone BCD Zone BCD

A

Y ~"
Byte Byte

Zone has different assigned codes depending on the
alphanumeric code (ASCII, EBCDIC etc.)
In EBCDIC — zone=1111

\ (5.9)

»(5.10)

In ASCIIT  — zone=0011 )
Zoned formats are used for Input / Output operations;
whereas compact formats are used in processing units
Automatic conversions form zoned to compact
formats and vice-versa are design.
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(5.11)

} (5.12)



