CONTENTS		for positive fractional numbers	2-4
		2.3. Analysis of the representation ranges	
		for negative fractional numbers	2-5
Preface	V	Floating Point representation of numbers	2-13
		3.1. General considerations	2-13
		3.2. FLP formats	2-14
Chapter 1 Negative Numbers Representation	1-1	3.3. Representation ranges for binary FLP	
Complement and its calculation	1-1	numbers	2-18
1.1. Concept of complement	1-1	3.4. Total number of expressible numbers	2-23
 1.2. Methods for complement calculation 	1-3	3.5. FLP representation and real number	
1.2.1. Radix 10	1-3	system	2-25
1. 10's complement	1-3	3.6. Example of FLP representation	2-26
2. 9's complement	1-4	3.7. Power of 2 radix FLP representation	2-28
1.2.2. Radix 2	1-6	3.8. Example of FLP representation in base 16	2-30
1. 2's complement	1-6	3.9. Comparative analysis of representation errors	s2-32
2. 1's complement	1-7	 3.10. Example of FLP representations in different 	
Special Codes for negative numbers		computer families	2-34
representation	1-8	3.10.1. Felix C family	2-34
2.1. General formulation of the problem	1-8	3.10.2. PDP-11 family	2-45
2.2. Sign – Magnitude representation	1-10	3.11. IEEE Floating Point Standard 754 - 85	2-51
2.3. Two's Complement representation	1-12	3.11.1. Short history	2-51
2.3.1. General considerations	1-12	3.11.2. Basic FLP formats	2-51
2.3.2. Variant 1	1-12	3.11.3. Normalized Numbers	2-54
2.3.3. Variant 2	1-16	3.11.4. Examples of normalized number	
2.3.4. Variant 3	1-17	representations	2-58
2.4. One's Complement representation	1-20	3.11.5. Denormalized numbers	2-60
2.4.1. General considerations	1-20	3.11.6. Representation of number 0	2-65
2.4.2. Variant 1	1-20	3.11.7. Representation of infinity	2-67
2.4.3. Variant 2	1-24	3.11.8. Not a Number (NaN) representation	2-69
2.4.4. Variant 3	1-27	3.11.9. Recapitulation of all IEEE FLP Stand	dard
2.5. Shifting of signed binary numbers	1-30	754 – 85 numerical types	2-70
		3.11.10. IEEE FLP Standard 754 – 85	
Chapter 2 Forms of Information Representation in		representation on real axis	2-71
Digital Computers	2-1	4. Representation of alphanumeric information	2-75
General considerations	2-1	4.1. Introduction	2-75
2. Fixed - Point representation of numbers	2-3	4.2. Conditions for alphanumeric character code	2-75
2.1. Introductory concepts	2-3	4.3. ASCII - 8 and EBCDIC codes	2-77
2.2. Analysis of the representation ranges		4.3.1. ASCII alphanumeric code	2-77

i

4.3.2. EBCDIC alphanumeric code	2-79	Chapter 5 Elementary Educational Computer	5-1
4.4. Alphanumeric information	2-81	1. General structure of the Elementary Educational	
4.5. Unicode character set	2-81	Computer (EEC)	5-1
5. Decimal information representation	2-83	2. Presentation of the EEC units	5-1
·		2.1. Memory Unit (MU)	5-1
Chapter 3 General organisation of a digital compute	r.	2.2. Arithmetic and Logic Unit (ALU)	5-2
The von Neumann's model. Instruction		2.3. Control Unit (CU)	5-3
Cycle	3-1	4.4. Input/Output Units (I/O)	5-4
Definition of a digital computer. Computer		3. The register structure of the EEC	5-4
architecture, computer organisation, computer		4. Mode of operation	5-6
implementation	3-1	4.1. General considerations	5-6
2. Short history on stored program computers		4.2. FETCH Phase	5-6
concept	3-4	4.3. EXECUTE Phase	5-8
3. The von Neumann's principles	3-7	A. Addition	5-8
4. The von Neumann's model of a digital computer	3-12	B. Subtraction	5-9
5. Instruction cycle	3-24	C. Load	5-11
5.1. Principle of the Digital Computer Operation	3-24	D. Store	5-12
5.2. Implementation of the Instruction Cycle	3-25	E. Unconditional JUMP	5-13
		F. Conditional JUMP	5-14
Chapter 4 Central Processing Unit	4-1	G. Input	5-16
 CPU organisation and operation flowchart 	4-1	H. Output	5-17
1.1. General concepts	4-1		
1.2. Flowchart of CPU operation	4-3	Chapter 6 Organisation of the CPU – peripheral	
1.3. General structure of a CPU	4-5	devices communication	6-1
 1.4. The evolution of CPU during the FETCH 		 Peripheral devices in the computer system 	6-1
Phase	4-8	2. Input/Output units	6-2
1.5. The evolution of CPU during the EXECUTE		Modes of transfer	6-7
Phase	4-9	4. I/O processors (channels)	6-8
2. Techniques for balancing the speeds of CPU and		5. Selector and multiplexer I/O processors (channels)	6-11
main memory	4-11		
2.1. General considerations	4-11	References	R-1
2.2. Widening the memory bus	4-12	Annex 1 CPU ORGANIZATION	
2.3. Increasing the number of levels in the		Annex 2 FETCH PHASE	
memory hierarchy	4-16	Annex 3 EXECUTE PHASE	
2.4. Prefetching	4-18	Annex 4 ALU WITH GENERAL REGISTER SET	
An example of CPU with general registers set		Annex 5 ELEMENTARY EDUCATIONAL COMPUTER	
organisation	4-20	Annex 6 TYPICAL I/O ARHITECTURE	

iv

iii