

Chapter 3. Transport layer protocols: UDP and TCP

3.1 Ports and sockets

The most important and commonly used protocols of the transport layer include:

 User Datagram Protocol (UDP)
 Transmission Control Protocol (TCP)

By building on the functionality provided by the Internet Protocol (IP), the transport
protocols deliver data to applications executing in the internet. This is done by making use
of ports. The transport protocols can provide additional functionality such as congestion
control, reliable data delivery, duplicate data suppression, and flow control as is done by
TCP.

This section introduces the concepts of the port and socket, which are needed to determine
which local process at a given host actually communicates with which process, at which
remote host, using which protocol. If this sounds confusing, consider the following points:

 An application process is assigned a process identifier number (process ID), which is
likely to be different each time that process is started.

 Process IDs differ between operating system platforms, thus they are not uniform.
 A server process can have multiple connections to multiple clients at a time, thus

simple connection identifiers are not unique. The concept of ports and sockets
provides a way to uniformly and uniquely identify connections and the programs and
hosts that are engaged in them, irrespective of specific process IDs.

The concept of ports and sockets provides a way to uniformly and uniquely identify
connections and the programs and hosts that are engaged in them, irrespective of specific
process IDs.

3.1.1 Ports

Each process that wants to communicate with another process identifies itself to the TCP/IP
protocol suite by one or more ports. A port is a 16-bit number used by the host-to-host
protocol to identify to which higher-level protocol or application program (process) it must
deliver incoming messages. There are two types of ports:

 Well-known: Well-known ports belong to standard servers, for example, Telnet uses
port 23, http (www) uses port 80, SMTP (e-mail) uses port 25 etc. Well-known port
numbers range between 1 and 1023 (prior to 1992, the range between 256 and 1023
was used for UNIX-specific servers). Well-known port numbers are typically odd,

because early systems using the port concept required an odd/even pair of ports for
duplex operations. Most servers require only a single port. Exceptions are the BOOTP
server, which uses two: 67 and 68 and the FTP server, which uses two: 20 and 21.
The well-known ports are controlled and assigned by the Internet Assigned Number
Authority (IANA) and on most systems can only be used by system processes or by
programs executed by privileged users. Well-known ports allow clients to find
servers without configuration information.

 Ephemeral: Some clients do not need well-known port numbers because they
initiate communication with servers, and the port number they are using is
contained in the UDP/TCP datagrams sent to the server. Each client process is
allocated a port number, for as long as it needs, by the host on which it is running.
Ephemeral port numbers have values greater than 1023, normally in the range of
1024 to 65535. Ephemeral ports are not controlled by IANA and can be used by
ordinary user-developed programs on most systems.

Confusion, due to two different applications trying to use the same port numbers on one
host, is avoided by writing those applications to request an available port from TCP/IP.
Because this port number is dynamically assigned, it can differ from one invocation of an
application to the next. UDP and TCP use the same port principle. To the best possible
extent, the same port numbers are used for the same services on top of UDP and TCP.

Note: Normally, a server will use either TCP or UDP, but there are exceptions. For example,
domain name servers use both UDP port 53 and TCP port 53.

3.1.2 Sockets

The socket interface is one of several application programming interfaces to the
communication protocols. Designed to be a generic communication programming interface,
socket APIs were first introduced by 4.2 Berkeley Software Distribution (BSD). Although it
has not been standardized, Berkeley socket API has become a de facto industry standard
abstraction for network TCP/IP socket implementation.
Consider the following terminologies:

 A socket is a special type of file handle, which is used by a process to request
network services from the operating system.
A socket address is the triple:
<protocol, local-address, local port>
For example, in the TCP/IP (version 4) suite:
<tcp, 192.168.14.234, 8080>
A conversation is the communication link between two processes.

 An association is the 5-tuple that completely specifies the two processes that
comprise a connection:
<protocol, local-address, local-port, foreign-address, foreign-port>
In the TCP/IP (version 4) suite, the following could be a valid association:
<tcp, 192.168.14.234, 1500, 192.168.44, 22>

 A half-association is either one of the following, which each specify half of a
connection:
<protocol, local-address, local-process>

Or:
<protocol, foreign-address, foreign-process>
The half-association is also called a socket or a transport address. That is, a socket is
an endpoint for communication that can be named and addressed in a network.

Two processes communicate through TCP sockets. The socket model provides a process
with a full-duplex byte stream connection to another process. The application need not
concern itself with the management of this stream; these facilities are provided by TCP.

TCP uses the same port principle as UDP to provide multiplexing. Like UDP, TCP uses well-
known and ephemeral ports. Each side of a TCP connection has a socket that can be
identified by the triple <TCP, IP address, port number>. If two processes are communicating
over TCP, they have a logical connection that is uniquely identifiable by the two sockets
involved, that is, by the combination <TCP, local IP address, local port, remote IP address,
remote port>. Server processes are able to manage multiple conversations through a single
port.

3.2 User Datagram Protocol (UDP)

UDP is a standard protocol and almost every implementation intended for small data units
transfer or those which can afford to lose a little amount of data (such as multimedia
streaming) will include UDP.

UDP is basically an application interface to IP. It adds no reliability, flow-control, or error
recovery to IP. It simply serves as a multiplexer/demultiplexer for sending and receiving
datagrams, using ports to direct the datagrams, as shown in Fig. 3.1.

Fig. 3.1. UDP: Demultiplexing based on ports

UDP provides a mechanism for one application to send a datagram to another. The UDP
layer can be regarded as being extremely thin and is, consequently, very efficient, but it
requires the application to take responsibility for error recovery and so on.

Applications sending datagrams to a host need to identify a target that is more specific than
the IP address, because datagrams are normally directed to certain processes/application
and not to the system as a whole. UDP provides this by using ports.

3.2.1 UDP datagram format

Each UDP datagram is sent within a single IP datagram. Although, the IP datagram might be
fragmented during transmission, the receiving IP implementation will reassemble it before
presenting it to the UDP layer. All IP implementations are required to accept datagrams of
576 bytes, which means that, allowing for maximum-size IP header of 60 bytes, a UDP
datagram of 516 bytes is acceptable to all implementations. Many implementations will
accept larger datagrams, but this is not guaranteed.

The UDP datagram has an 8-byte header, as described in Fig. 3.2.

Fig. 3.2. UDP Datagram format

Where:
Source Port Indicates the port of the sending process. It is the port to which

replies are addressed.
Destination Port Specifies the port of the destination process on the destination host.
Length The length (in bytes) of this user datagram, including the header.
Checksum An optional 16-bit one's complement of the one's complement sum of

a pseudo-IP header, the UDP header, and the UDP data. In Figure 4-3,
we see a pseudo-IP header. It contains the source and destination IP
addresses, the protocol, and the UDP length.

3.2.2 UDP application programming interface

The way this interface is implemented is left to the discretion of each vendor. Be aware that
UDP and IP do not provide guaranteed delivery, flow-control, or error recovery, so these
must be provided by the application.

Standard applications using UDP include:

 Trivial File Transfer Protocol (TFTP)
 Domain Name System (DNS) name server
 Remote Procedure Call (RPC), used by the Network File System (NFS)
 Simple Network Management Protocol (SNMP)
 Lightweight Directory Access Protocol (LDAP)

3.3 Transmission Control Protocol (TCP)

TCP is a standard protocol and in practice, every TCP/IP implementation that is not used
exclusively for routing will include TCP.

TCP provides considerably more facilities for applications than UDP. Specifically, this
includes error recovery, flow control, and reliability. TCP is a connection-oriented protocol,
unlike UDP, which is connectionless. Most of the user application protocols, such as Telnet
and FTP, use TCP. The two processes communicate with each other over a TCP connection
(InterProcess Communication, or IPC), as shown in Figure 3.3. In the figure, processes 1 and
2 communicate over a TCP connection carried by IP datagrams.

Fig. 3.3. TCP: Connection between processes

3.3.1 TCP concept

As noted earlier, the primary purpose of TCP is to provide a reliable logical circuit or
connection service between pairs of processes. It does not assume reliability from the
lower-level protocols (such as IP), so TCP must guarantee this itself.

TCP can be characterized by the following facilities it provides for the applications using it:

 Stream data transfer: From the application's viewpoint, TCP transfers a continuous
stream of bytes through the network. The application does not have to bother with
chopping the data into basic blocks or datagrams. TCP does this by grouping the
bytes into TCP segments, which are passed to the IP layer for transmission to the
destination. Also, TCP itself decides how to segment the data, and it can forward the
data at its own convenience. Sometimes, an application needs to be sure that all the

data passed to TCP has actually been transmitted to the destination. For that reason,
a push function is defined. It will push all remaining TCP segments still in storage to
the destination host. The normal close connection function also pushes the data to
the destination.

 Reliability: TCP assigns a sequence number to each byte transmitted, and expects a
positive acknowledgment (ACK) from the receiving TCP layer. If the ACK is not
received within a timeout interval, the data is retransmitted. Because the data is
transmitted in blocks (TCP segments), only the sequence number of the first data
byte in the segment is sent to the destination host. The receiving TCP uses the
sequence numbers to rearrange the segments when they arrive out of order, and to
eliminate duplicate segments.

 Flow control: The receiving TCP, when sending an ACK back to the sender, also
indicates to the sender the number of bytes it can receive (beyond the last received
TCP segment) without causing overrun and overflow in its internal buffers. This is
sent in the ACK in the form of the highest sequence number it can receive without
problems. This mechanism is also referred to as a window-mechanism.

 Multiplexing: Achieved through the use of ports, just as with UDP.
 Logical connections: The reliability and flow control mechanisms described here

require that TCP initializes and maintains certain status information for each data
stream. The combination of this status, including sockets, sequence numbers, and
window sizes, is called a logical connection. Each connection is uniquely identified by
the pair of sockets used by the sending and receiving processes.

 Full duplex: TCP provides for concurrent data streams in both directions.

3.3.2 The window principle

A simple transport protocol might use the following principle: send a packet and then wait
for an acknowledgment from the receiver before sending the next packet. If the ACK is not
received within a certain amount of time, retransmit the packet. See Figure 3.4. for more
details.

Fig. 3.4. TCP: The window principle

Now, consider a protocol where the sender groups its packets to be transmitted, as in Fig.
3.5, and uses the following rules:

 The sender can send all packets within the window without receiving an ACK, but
must start a timeout timer for each of them.

 The receiver must acknowledge each packet received, indicating the sequence
number of the last well-received packet.

 The sender slides the window on each ACK received.

Fig. 3.5. Window principle (1)

As shown in Fig.3.6, the sender can transmit packets 1 to 5 without waiting for any
acknowledgment.

Fig. 3.6 Window principle (2)

As shown in Fig. 3.7, at the moment the sender receives ACK 1 acknowledgment for packet

1), it can slide its window one packet to the right.

Fig. 3.7 Window principle (3)

At this point, the sender can also transmit packet 6.

Imagine some special cases:

 Packet 2 gets lost: The sender will not receive ACK 2, so its window will remain in
position 1. In fact, because the receiver did not receive packet 2, it will acknowledge
packets 3, 4, and 5 with an ACK 1, because packet 1 was the last one received in
sequence. At the sender's side, eventually a timeout will occur for packet 2 and it will
be retransmitted. Note that reception of this packet by the receiver will generate
ACK 5, because it has now successfully received all packets 1 to 5, and the sender's
window will slide four positions upon receiving this ACK 5.

 Packet 2 did arrive, but the acknowledgment gets lost: The sender does not receive
ACK 2, but will receive ACK 3. ACK 3 is an acknowledgment for all packets up to 3
(including packet 2) and the sender can now slide its window to packet 4.

This window mechanism ensures:

 Reliable transmission.
 Better use of the network bandwidth (better throughput).
 Flow-control, because the receiver can delay replying to a packet with an

acknowledgment, knowing its free buffers are available and the window size of the
communication.

3.3.3 The window principle applied to TCP

The previously discussed window principle is used in TCP, but with a few differences:

 Because TCP provides a byte-stream connection, sequence numbers are assigned to
each byte in the stream. TCP divides this contiguous byte stream into TCP segments
to transmit them. The window principle is used at the byte level, that is, the
segments sent and ACKs received will carry byte-sequence numbers and the window
size is expressed as a number of bytes, rather than a number of packets.

 The window size is determined by the receiver when the connection is established
and is variable during the data transfer. Each ACK message will include the window
size that the receiver is ready to deal with at that particular time.

The sender's data stream can now be seen as follows in Fig. 3.8.

Fig. 3.8. Window principle applied to TCP

Where:
A Bytes that are transmitted and have been acknowledged
B Bytes that are sent but not yet acknowledged

C Bytes that can be sent without waiting for any acknowledgment
D Bytes that cannot be sent yet

Remember that TCP will block bytes into segments, and a TCP segment only carries the
sequence number of the first byte in the segment.

3.3.4 TCP segment format

Fig. 3.9 shows the TCP segment format.

Fig. 3.9. TCP Segment format

Where:
Source Port The 16-bit source port number, used by the receiver to reply.
Destination Port The 16-bit destination port number.
Sequence Number The sequence number of the first data byte in thissegment. If the SYN

control bit is set, the sequence number is the initial sequence number
(n) and the first data byte is n+1.

Acknowledgment Number
 If the ACK control bit is set, this field contains the value of the next

sequence number that the receiver is expecting to receive.
Data Offset The number of 32-bit words in the TCP header. It indicates where the

data begins.
Reserved Six bits reserved for future use; must be zero.
URG Indicates that the urgent pointer field is significant in this segment.
ACK Indicates that the acknowledgment field is significant in this segment.

PSH Push function.
RST Resets the connection.
SYN Synchronizes the sequence numbers.
FIN No more data from sender.
Window Used in ACK segments. It specifies the number of data bytes,

beginning with the one indicated in the acknowledgment number
field that the receiver (the sender of this segment) is willing to accept.

Checksum The 16-bit one's complement of the one's complement sum of all 16-
bit words in a pseudo-header, the TCP header, and the TCP data.
While computing the checksum, the checksum field itself is
considered zero.

The pseudo-header is the same as that used by UDP for calculating
the checksum. It is a pseudo-IP-header, only used for the checksum
calculation, with the format shown in Fig. 3.10.

Fig. 3.10. Pseudo-IP header

Urgent Pointer Points to the first data octet following the urgent data. Only

significant when the URG control bit is set.
Options Just as in the case of IP datagram options, options can be either:
 – A single byte containing the option number
 – A variable length option
 Maximum segment size option

This option is only used during the establishment of the
connection (SYN control bit set) and is sent from the side that is to
receive data to indicate the maximum segment length it can
handle. If this option is not used, any segment size is allowed.

 Window scale option
This option is not mandatory. Both sides must send the Window
scale option in their SYN segments to enable windows scaling in
their direction.

 SACK-permitted option
This option is set when selective acknowledgment is used in that
TCP connection.

 Timestamps option
The timestamps option sends a time stamp value that indicates
the current value of the time stamp clock of the TCP sending the
option.

Padding All zero bytes are used to fill up the TCP header to a total length that
is a multiple of 32 bits.

3.3.5 Acknowledgments and retransmissions

TCP sends data in variable length segments. Sequence numbers are based on a byte count.
Acknowledgments specify the sequence number of the next byte that the receiver expects
to receive.

Consider that a segment gets lost or corrupted. In this case, the receiver will acknowledge
all further well-received segments with an acknowledgment referring to the first byte of the
missing packet. The sender will stop transmitting when it has sent all the bytes in the
window. Eventually, a timeout will occur and the missing segment will be retransmitted.

Fig. 3.11. illustrates and example where a window size of 1500 bytes and segments of 500
bytes are used.

Fig. 3.11. TCP Acknowledgment and retransmission process

A problem now arises, because the sender does know that segment 2 is lost or corrupted,
but does not know anything about segments 3 and 4. The sender should at least retransmit
segment 2, but it could also retransmit segments 3 and 4 (because they are within the
current window). It is possible that:

 Segment 3 has been received, and we do not know about segment 4. It might be
received, but ACK did not reach us yet, or it might be lost.

 Segment 3 was lost, and we received the ACK 1500 on the reception of segment 4.

Each TCP implementation is free to react to a timeout as those implementing it want. It can
retransmit only segment 2, but in the second case, we will be waiting again until segment 3
times out. In this case, we lose all of the throughput advantages of the window mechanism.
Or TCP might immediately resend all of the segments in the current window.

Whatever the choice, maximal throughput is lost. This is because the ACK does not contain a
second acknowledgment sequence number indicating the actual frame received.

3.3.6 Variable timeout intervals

Each TCP should implement an algorithm to adapt the timeout values to be used for the
round trip time of the segments. To do this, TCP records the time at which a segment was
sent, and the time at which the ACK is received. A weighted average is calculated over
several of these round trip times, to be used as a timeout value for the next segment or
segments to be sent.

This is an important feature, because delays can vary in IP network, depending on multiple
factors, such as the load of an intermediate low-speed network or the saturation of an
intermediate IP gateway.

3.3.7 Establishing a TCP connection

Before any data can be transferred, a connection has to be established between the two
processes. One of the processes (usually the server) issues a passive OPEN call, the other an
active OPEN call. The passive OPEN call remains dormant until another process tries to
connect to it by an active OPEN.

As shown in Fig. 3.12., in the network, three TCP segments are exchanged.

Fig. 3.12. TCP Connection establishment

This whole process is known as a three-way handshake. Note that the exchanged TCP
segments include the initial sequence numbers from both sides, to be used on subsequent
data transfers.

Closing the connection is done implicitly by sending a TCP segment with the FIN bit (no
more data) set. Because the connection is full-duplex (that is, there are two independent
data streams, one in each direction), the FIN segment only closes the data transfer in one
direction. The other process will now send the remaining data it still has to transmit and also
ends with a TCP segment where the FIN bit is set. The connection is deleted (status
information on both sides) after the data stream is closed in both directions.

The following is a list of the different states of a TCP connection:

 LISTEN: Awaiting a connection request from another TCP layer.
 SYN-SENT: A SYN has been sent, and TCP is awaiting the response SYN.
 SYN-RECEIVED: A SYN has been received, a SYN has been sent, and TCP is awaiting an

ACK.
 ESTABLISHED: The three-way handshake has been completed.
 FIN-WAIT-1: The local application has issued a CLOSE. TCP has sent a FIN, and is

awaiting an ACK or a FIN.
 FIN-WAIT-2: A FIN has been sent, and an ACK received. TCP is awaiting a FIN from

the remote TCP layer.
 CLOSE-WAIT: TCP has received a FIN, and has sent an ACK. It is awaiting a close

request from the local application before sending a FIN.
 CLOSING: A FIN has been sent, a FIN has been received, and an ACK has been sent.

TCP is awaiting an ACK for the FIN that was sent.
 LAST-ACK: A FIN has been received, and an ACK and a FIN have been sent. TCP is

awaiting an ACK.

3.3.8 Congestion avoidance

The assumption of the algorithm is that packet loss caused by damage is very small (much
less than 1%). Therefore, the loss of a packet signals congestion somewhere in the network
between the source and destination. There are two indications of packet loss:

 A timeout occurs.
 Duplicate ACKs are received.

Congestion avoidance and slow start are independent algorithms with different objectives.
But when congestion occurs, TCP must slow down its transmission rate of packets into the
network and invoke slow start to get things going again. In practice, they are implemented
together.

Congestion avoidance and slow start require that two variables be maintained for each
connection:

 A congestion window, cwnd
 A slow start threshold size, ssthresh

The combined algorithm operates as follows:

1. Initialization for a given connection sets cwnd to one segment and ssthresh to 65535
bytes.

2. The TCP output routine never sends more than the lower value of cwnd or the
receiver's advertised window.

3. When congestion occurs (timeout or duplicate ACK), one-half of the current window
size is saved in ssthresh. Additionally, if the congestion is indicated by a timeout,
cwnd is set to one segment.

4. When new data is acknowledged by the other end, increase cwnd, but the way it
increases depends on whether TCP is performing slow start or congestion avoidance.
If cwnd is less than or equal to ssthresh, TCP is in slow start; otherwise, TCP is
performing congestion avoidance.

Slow start continues until TCP is halfway to where it was when congestion occurred (since it
recorded half of the window size that caused the problem in step 2), and then congestion
avoidance takes over. Slow start has cwnd begin at one segment, and incremented by one
segment every time an ACK is received. As mentioned earlier, this opens the window
exponentially: send one segment, then two, then four, and so on.

Congestion avoidance dictates that cwnd be incremented by segsize*segsize/cwnd each
time an ACK is received, where segsize is the segment size and cwnd is maintained in bytes.
This is a linear growth of cwnd, compared to slow start's exponential growth. The increase
in cwnd should be at most one segment each round-trip time (regardless of how many ACKs
are received in that round-trip time), while slow start increments cwnd by the number of
ACKs received in a round-trip time. Many implementations incorrectly add a small fraction
of the segment size (typically the segment size divided by 8) during congestion avoidance.
This is wrong and should not be emulated in future releases.

